~	A T	
	NA	
$\mathbf{o}_{\mathbf{i}}$	No.	

		CITTO
Register Number		

2019 STATISTICS (PG Standard)

Time Allowed: 3 Hoursl

[Maximum	Marks	:	300
----------	-------	---	-----

STPC/19

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer, the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed, it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination, it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
 - You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.
- 6. You will also encode your Question Booklet Number with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per Commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. Do not make any marking in the question booklet except in the sheet before the last page of the question booklet, which can be used for rough work. This should be strictly adhered.
- 11. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

3000000

en en

1.		If A, B, C are any three events then the theoretical expression for both 'A and B' but not 'C' occurs is					
A.	(A)	$A \cap \overline{B} \cap \overline{C}$		(B)	$A \cup B \cap C$		
	4	$A \cap B \cap \overline{0}$	$\overline{\mathcal{C}}$	(D)	$A \cap B \cup \overline{C}$		
2.	The o	definition o	of empirical probabili	ity was origina	lly given by		
	(A)	Pascal			Von-Mises	****	
	(C)	Feller		(D)	De Moivre		
, ×,							
3.	A let	ter of the	English alphabet is the letter m and is a	s chosen at ra	andom. The probability that the	letter so	
	(A)	3/26		(B)	5/26		
	Very .	2/26		(D)	4/26		
24							
4.	With	usual nota	ations, if $P(A \cup B) = 0$	0.7 , $P(A \cap B)$:	=.4 and $P(A/B) = 2/3$, then $P(\overline{B})$	= 1,4 -1	
	V	2/5		(B)	3/5		
	(C)	4/5		(D)	1/5	<i></i>	
	(
5.	If B	$\subset A$, then	P(A)-P(B)=				
	(A)	$P(A \cap B)$		(B)	$P(A \cup B)$		
	LON	$P(A \cap \overline{B})$)	(D)	$P(\overline{A} \cap B)$		
6.	Let 2	A_1 and A_2	be events in a samp	le S such that	$P(A) = \frac{1}{2} = P(B) \text{ and } P(A^c \cap B^c) =$	$\frac{1}{2}$. Then	
*		$\cup B^c) =$				J	
	S	5/6		(B)	3/4		
	(C)	1/3		(D)	2/3		
			8 X 8 2				

will be alive?

(B) 24/91

If in 8:5 against the wife who is 40 years old living till she in 70 and 4:3 against her husband now 50 living till he in 80. Which of the following is the probability that at least one

7.

- If $P(x) = \begin{cases} \frac{x}{15}, & x = 1, 2, 3, 4, 5 \\ 0, & \text{otherwise} \end{cases}$ then $P\left\{\frac{1}{2} < X < \frac{5}{2} | X > 1\right\} = 0$
 - $P\left\{\frac{1}{2} < X < \frac{5}{2} | X > 1\right\} = \frac{1}{7}$ (B) $P\left\{\frac{1}{2} < X < \frac{5}{2} | X > 1\right\} = \frac{2}{7}$
 - (C) $P\left\{\frac{1}{2} < X < \frac{5}{2} | X > 1\right\} = \frac{3}{7}$
- (D) $P\left\{\frac{1}{2} < X < \frac{5}{2} | X > 1\right\} = \frac{4}{7}$
- If X_1, X_2, \dots are i.i.d B(r,p) and $S_n = X_1 + X_2 + \dots + X_n$, then $E(S_n) = nrp$, $V(S_n) = nrpq$. Then 9. the distribution of $\frac{S_n - E(S_n)}{\sqrt{V(S_n)}}$ is
 - (A) $N(\mu, \sigma)$

 $N(0,\sigma^2)$ (C)

- (B) $N(\mu, \sigma^2)$ N(0, 1)
- 10. For any real constants a and b with $a \le b$ and F(x) the probability distribution function of random variable X, the following is true
 - (A) $P(a \le X \le b) = F(b) F(a)$
- (B) $P(a \le X \le b) = F(a) F(b)$

(C) $P(a \le X \le b) = F(a)$

- (D) $P(a \le X \le b) = F(b)$
- Let A_1, A_2 ... be independent events on (S, B, P) and $A = \overline{\lim} A_n$. If $\sum_{i=1}^{\infty} P(A_n) = \infty$. Then
 - P(A) = 0(A)

P(A)=1

P(A) = -1(C)

- (D) $P(A) = \infty$
- Let X and Y have joint probability density function f(x,y)=2, 0 < x < y < 1. The conditional 12. mean of X given Y is
 - (A) $\frac{y^2}{2}$

(D) $\frac{1}{2}$

13. The recurrence relation for cumulants of binomial distribution is

(B) $K_{r+1} = pq \frac{d^2 K_r}{dp^2}$

(C)
$$K_{r+1} = pq \frac{dK_r}{dq}$$

- (D) $K_{r+1} = pq \frac{d^2 K_r}{da^2}$
- 14. If X follows a binomial distribution with parameters n=8 and $P=\frac{1}{2}$ then $P(|X-4|\leq 2)=$

(B) $\frac{118}{128}$

(C) $\frac{117}{128}$

- (D) $\frac{116}{128}$
- 15. If $X \sim B\left(16, \frac{1}{4}\right)$, then its value of mode is
 - (A) 8

(B) 6

4

- (D) 2
- 16. If X and Y are independent Poisson variates such that P(X=1)=P(X=2) and P(Y=2)=P(Y=3). The variance of (X-2Y) is
 - (A) 11

(B) 12

(C) 13

- 14
- 17. If $X \sim B\left(3, \frac{1}{3}\right)$ and $Y \sim B\left(5, \frac{1}{3}\right)$, then the MGF of the random variable Z = X + Y is
 - (A) $M_z(t) = \left(\frac{2}{3} + \frac{1}{3}e^t\right)^3$

(B) $M_z(t) = \left(\frac{2}{3} + \frac{1}{3}e^t\right)^5$

(C) $M_z(t) = \left(\frac{2}{3} + \frac{1}{2}e^t\right)^8$

 $M_z(t) = \left(\frac{2}{3} + \frac{1}{3}e^t\right)^8$

- For Binomial distribution n=10 and p=0.6, $E(X^2)$ is 18.
 - (A) 30

(C) 8

- The MGF of the random variable with the probability law $p(X = x) = q^{x-1}p$; x = 1, 2, 3... is 19.
 - $M_X(t) = \frac{pe^t}{1 q^{et}}$

(B) $M_X(t) = \frac{qe^t}{1 - p^{et}}$

(C) $M_X(t) = \frac{p}{(1-q)^{et}}$

- (D) $M_X(t) = \frac{e^t}{1 a^{et}}$
- If a beta variate $X \sim B_1(m, n)$ where m = 1 and n > 1 the mode lies at the point 20.
 - X=1

X = 0.5(C)

- (D) Both (A) and (B)
- If $X \sim N(5, 1)$, the probability density function for the normal variate X is 21.
 - (A) $\frac{1}{5\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{X-1}{5}\right)^2}$

(B) $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{X-1}{5}\right)^2}$

(C) $\frac{1}{5\sqrt{2\pi}}e^{-\frac{1}{2}X^2}$

- $\frac{1}{\sqrt{2-}}e^{-\frac{1}{2}(X-5)^2}$
- If X has a Uniform distribution in (0, 1), the distribution of $(pdf) 2\log X$ is 22.
 - (A) $-\frac{1}{2}e^{-\frac{y}{2}}, 0 < y < \infty$

 $\frac{1}{2}e^{-\frac{y}{2}}, 0 < y < \infty$

(C) $-\frac{1}{2}e^{\frac{y}{2}}, 0 < y < \infty$

- (D) $\frac{1}{2}e^{\frac{y}{2}}, 0 < y < \infty$
- If $X \sim \chi^2_{(2)}$, then its skewness and kurtosis is
 - (A) $\beta_1 = 8, \ \beta_2 = 15$

(D) $\beta_1 = 4, \ \beta_2 = 9$ (D) $\beta_1 = 3, \ \beta_2 = 12$

(C) $\beta_1 = 2, \beta_2 = 6$

- 24. The Joint probability density function of two-dimensional random variable (X, Y) is given by $f(x, y) = \begin{cases} 2, & 0 < x < 1, & 0 < y < x \\ 0, & \text{otherwise} \end{cases}$ then the marginal density of X is
 - (A) $f_X(x) = 2x, 0 < x < y$
 - (B) $f_X(x) = 2x, 0 < x < \infty$
 - $f_X(x) = 2x, \ 0 < x < 1$
 - (D) $f_X(x) = 2x, 0 < y < x$
- 25. The Skewness (β_1) and Kurtosis (β_2) of Normal distribution are
 - (A) $\beta_1 = 3$ and $\beta_2 = 0$

(B) $\beta_1 = 0$ and $\beta_2 = -3$

 $\beta_1 = 0 \text{ and } \beta_2 = 3$

- (D) $\beta_1 = -3 \text{ and } \beta_2 = 0$
- 26. The Mean and Variance of geometric distribution are
 - (A) $\frac{p}{q}$ and $\frac{p^2}{q}$

 $\frac{q}{p}$ and $\frac{q}{p^2}$

(C) $\frac{q}{p}$ and $\frac{q}{p}$

- (D) $\frac{p}{q}$ and $\frac{p}{q}$
- 27. In 256 sets of twelve tosses of a fair coin, in how many cases may one expect eight heads and Four tails?
 - (A) 25

(B) 29

(C) 21

- 31
- 28. The family of parametric distributions, for which the mean and variance does not exist.
 - (A) Normal distribution
 - (B) Negative Binomial distribution
 - Cauchy distribution
 - (D) Polya's distribution
- 29. Which of the following is a symmetrical distribution?
 - 1

(B) F

(C) χ^2

(D) Beta

(D)
$$\frac{1}{\overline{x}}$$

31. If T_1 is the most efficient estimators with variance V_1 and T_2 is any other estimator with variance V_2 then the efficiency of T_2 is given by

(A) V_2

(C) $V_2 - V_1$

(D) $V_1 - V_2$

32. An estimator is said to be sufficient for a parameter, if

- (A) it contains parameters
- (B) the mathematical expectation of the estimator is equal to the parameter
- (C) the variance of the estimator is less

it contains all the information in the sample regarding the parameters

33. Let $x_1, x_2, ..., x_n$ be a random sample from a Bernoulli population $p^x(1-p)^{n-x}$. A sufficient statistics for p is

(B) $\prod_{i=1}^{n} x_{i}$

(C) Max $(x_1, x_2...x_n)$

(D) $Min(x_1, x_2...x_n)$

34. Let $x_1, x_2...x_n$ be a random sample from a population with p.d.f. $f(x, \theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta > 0$. The sufficient estimator for θ is

(A) $\sum x_i$

(B) $\sum_{n} x_i$

(D)
$$\frac{\prod_{i=1}^{n} x_i}{n}$$

35.	A un	iformly most powerful test among the	class o	f unbiased test is termed as:
	(A)	Minimax test	i i	
	(B)	Minimax unbiased test		
	101	Uniformly most powerful unbiased t	test	
	(D)	Optimum biased test .		
				field and the same
36.	The	concept of asymptotic relative efficience		
	(A)	Jean Gibbons	cy was i	E.J.G. Pitman
	(C)	A.M. Mood	(D)	
	(0)	A.M. Wood	(D)	F. Wilcoxon
37.	H_0 :	$\mu = \mu_0$ is an example for		
	(A)	Simple Hypothesis	9	Composite Hypothesis
	(C)	Alternate Hypothesis	(D)	Direct Hypothesis
38.	Leve	l of significance is the probability of		
	1	Type I error	(B)	Type II error
	(C)	Not committing error	(D)	Any of (B) and (C)
			(12)	my or (b) and (c)
0.0				
39		933, the theory of testing of Hypothesi		
	(A)	R.A. Fisher	(B)	Committee of the Commit
	(C)	E.L. Lehman		Karl Pearson
		시 동차성에 전 됐으셨습니다.		
40.	Ordi	nary sign test utilises		
	(A)	Poisson distribution		
	D	Binomial distribution	8 294	
	(C)	Gamma distribution		
	(D)	Weibull distribution		
41.	The	other name of emprical distribution fu	nction	ic
	(A)	Parent distribution function	TICOIOII .	
	(B)	Pareto distribution function		
	-0	Sample distribution function		
	1	The state of the s		

(D)

Continuous distribution function

- 42. Let p be the probability that a coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ Vs. $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Then the probability of type I error is
 - $\frac{3}{16}$

(B) $\frac{5}{16}$

(C) $\frac{1}{4}$

- (D) $\frac{6}{16}$.
- 43. If $x \ge 1$ is the critical region for testing $H_0: \theta = 2\sqrt{S} \ \theta = 1$, on the basis of the single observation from the population, $f(x, \alpha) = \theta \ e^{-\theta x} (0 \le x < \alpha)$. The value of α is
 - (A) $\frac{1}{e}$

(B) e^2

 $\int \frac{1}{e^2}$

- (D) e
- 44. The value of the power function at a parameter point is called the at that point.
 - (A) Size of the test

(B) Power efficiency

(C) Type II error

- Power of the test
- 45. The Neyman-Pearson lemma provides the best critical region for testing null hypothesis against alternative hypothesis.
 - simple, simple

(B) simple, composite

(C) composite, composite

- (D) composite, simple
- 46. The relation between correlation co-efficient and regression co-efficients is
 - (A) $r = \frac{b_{xy} + b_{yx}}{2}$

(B) $r = \frac{1 + b_{yx}}{b_{xv}}$

(C) $r = \pm \sqrt{b_{xy} + b_{yx}}$

 $r = \pm \sqrt{b_{xy} \times b_{yx}}$

- 47. If the two lines of regression are coincident, the relation between the two regression co-efficient is
 - (A) $\beta_{YX} = \beta_{XY}$

 $\beta_{YX} \cdot \beta_{XY} = 1$

(C) $\beta_{YX} \leq \beta_{XY}$

- (D) $\beta_{YX} = -\beta_{XY}$
- 48. The assumption that the variable of the residuals about the predicted dependent variable scores should be the same for all predicted scores reflects which assumption?
 - (A) singularity

homoscedasticity

(C) multicollinearity

(D) homogeneity

49. Given the following data

 $\overline{X} = 7.6$, $\overline{Y} = 14.8$, $\sigma_x = 3.6$, $\sigma_y = 2.5$ and r = 0.99 the expected value of Y when X = 12 is

(A) 17.22

(B) 18.22

17.79

- (D) 18.79
- 50. The arithmetic mean of two regression co-efficients of a regression line is 0.7 and correlation co-efficient is 0.75. Are the results:
 - (A) valid

(P invalid

(C) inconclusive

- (D) conclusive
- 51. The residual variances of X and Y are zero (ie, $S_x^2 = S_y^2 = 0$) then the value of the correlation coefficient 'r' is
 - (A) 0

(B) -1

(C) +1

- (P) ±1
- 52. If $\overline{X} = 5$, $\overline{Y} = 4$, $b_{yx} = 0.8$, $b_{xy} = 0.55$ and $r = \frac{2}{3}$, then the regression equation of Y on X is
 - (A) y = 0.23x + 1.05

(B) y = -0.65x + 63.96

y = 0.8x

(D) y = 0.6x

- 53. The ratio estimate of Y, the population total of y_i , is
 - (A) $\hat{Y}_R = \overline{y} \cdot \overline{x} \cdot X$

(B) $\hat{Y}_R = \frac{\overline{x}}{\overline{y}} \cdot X$

 $\hat{Y}_R = \frac{\overline{y}}{\overline{x}} \cdot X$

- (D) $\hat{Y}_R = (\overline{y} \overline{x}) \cdot X$
- 54. The ratio estimate \hat{Y}_R has a smaller variance than the estimate $\hat{Y} = N \overline{y}$ if
 - (A) $\rho < \frac{1}{2} \left(\frac{S_x}{\overline{X}} \right) / \left(\frac{S_y}{\overline{Y}} \right)$

 $\rho > \frac{1}{2} \left(\frac{S_x}{\overline{X}} \right) / \left(\frac{S_y}{\overline{Y}} \right)$

(C) $\rho = \frac{1}{2} \left(\frac{S_x}{\overline{X}} \right) \times \left(\frac{S_y}{\overline{Y}} \right)$

(D) $\rho = \frac{1}{2} \left(\frac{S_x}{\overline{X}} \right) / \left(\frac{S_y}{\overline{Y}} \right)$

- 55. 'MOS&PI stands for
 - (A) Ministry of Statistics and Planning Implementation
 - (B) Ministry of Sociology and Planning Implementation
 - Ministry of Statistics and Programme Implementation
 - (D) Ministry of Scientific and Planning Implementation
- 56. What sampling design is most appropriate for cluster sampling?
 - simple random sampling without replacement
 - (B) simple random sampling with replacement
 - (C) stratified random sampling
 - (D) quota sampling
- 57. Systematic sampling means
 - (A) Selecting of n units contiguous units
 - Selection of n units situated at equal distances
 - (C) Selection of n largest units
 - (D) Selection of n middle units in a sequence

- 58. If interaction AB is confounded in a 2³ factorial experiment, the entries of two blocks in a replicate will be
 - Bl. 1:b, ac, bc, a Bl.2:(1), ab, c, abc
 - (B) Bl. 1:(1), ab, a, b Bl. 2:abc, c, bc, ac
 - (C) Bl.1:(1), ab, ac, bc Bl.2:abc, a, b, c
 - (D) Bl. 1: abc, bc, ac, c Bl. 2:ab, a, b, (1)
- 59. The most powerful test consists in minimising or maximising for fixed
 - type II error β , power $1-\beta$, α
 - (B) type I error α , $1-\alpha$, β
 - (C) type II error β , $1-\alpha$, β
 - (D) type II error β , α , β
- 60. In LSD, $var(\hat{\alpha}_i) =$
 - $\left(\frac{M-1}{M^2}\right)\sigma_e^2$

(B) $\frac{(M-1)}{M} \sigma_e^2$

(C) $\frac{M}{(m-1)} \cdot \sigma_e^2$

- (D) $\left(\frac{M^2}{M-1}\right)\sigma_e^2$
- 61. Which of the following is the expectation of blocks mean sum of squares in RBD?
 - (A) $\sigma_e^2/t-1$

(B) $\sigma_a^2 + t$

(C) $\sigma_e^2 + r$

- $\sigma_e^2 + t.\sigma_b^2$
- 62. The treatments are applied at random to relatively homogeneous units with in each strata or block. Then the design is a
 - (A) Completely Randomised Design
 - Randomised Block Design
 - (C) Latin Square Design
 - (D) Youden Square Design

63. A BIBD is said to be symmetric if

$$b=v$$
 and $r=k$

(B)
$$b = v$$
 and $r \neq k$

(C)
$$b \neq v$$
 and $r = k$

(D)
$$b \neq v$$
 and $r \neq k$

64. Error sum of squares in RBD as compared to CRD using the same material is

65. If k effects are confounded in a 2^n factorial to have 2^k blocks of size 2^{n-k} units, the number of automatically confounded effect is

(A)
$$2^k - k$$

(B)
$$k^2 - k - 1$$

$$(2^k-k-1)$$

(D)
$$2^{k-1}$$

66. The pairwise contrasts among the three treatment is

(A)
$$2T_1 + T_2 - 3T_3$$

(B)
$$T_1 + T_2 - 2T_3$$

$$T_3 - T_1$$

(D)
$$T_1 + T_3 - 2T_2$$

67. For any three events A, B and C $P(A \cup B/C)$ is equal to

$$P(A/C) + P(B/C) - P(A \cap B/C)$$

(B)
$$P(A/C) + P(B/C) + P(A \cap B/C)$$

(C)
$$P(A/C) - P(B/C) - P(A \cap B/C)$$

(D)
$$P(A/C) - P(B/C) + P(A \cap B/C)$$

68. The degrees of freedom for F-ratio in a 6×6 Latin square design is

69. Suppose the price of a commodity is Rs.20 in 2010 and Rs.30 in 2015. From 2010 to 2015, the price of commodity is increased by

50%

(B) 66.7%

(C) 100%

- (D) 60%
- 70. Basically, sampling inspection plan provides

adequate protection to producer and consumer very economically

- (B) adequate protection to producer only
- (C) adequate protection to consumer only
- (D) adequate protection to consumer and no protection to consumer
- 71. An appropriate control chart for number of defectives is
 - (A) p-chart

(B) u - chart

(C) c-chart

- d chart
- 72. $3-\sigma$ trial control limits with p' as mean number of defectives based on a sample of size n are
 - (A) $UCL = n\overline{p} + \sqrt{n\overline{p}(1-\overline{p})}$; $CL = \overline{p}$ and $LCL = n\overline{p} \sqrt{n\overline{p}(1-\overline{p})}$
 - $UCL = n\overline{p} + 3\sqrt{n\overline{p}(1-\overline{p})}$; $CL = n\overline{p}$ and $LCL = n\overline{p} 3\sqrt{n\overline{p}(1-\overline{p})}$
 - (C) $UCL = \overline{p} + 3\sqrt{n\overline{p}(1-\overline{p})}$; $CL = \overline{p}$ and $LCL = \overline{p} 3\sqrt{n\overline{p}(1-\overline{p})}$
 - (D) $UCL = n\overline{p} + \frac{1}{3}\sqrt{n\overline{p}(1-\overline{p})}$; $CL = \overline{p}$ and $LCL = n\overline{p} \frac{1}{3}\sqrt{n\overline{p}(1-\overline{p})}$
- 73. If μ and σ are the process mean and standard deviation, then the control limits $\mu \pm 3\sigma$ are known as
 - (A) modified control limits
 - natural control limits
 - (C) specified control limits
 - (D) unspecified control limits

74.		ormula for calculating cost of living inc	dex by	family budget method is
	(A)	$\frac{\sum PV}{\sum V} \times 100$		$\frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$
	S	$\frac{\sum PV}{\sum V}$	(D)	$\frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$
			8	
75.	The f	orces like floods, earthquakes, famines	s are c	lassified under the components
	(A)	Trend	(B)	Seasonal variations
	9	Irregular variations	(D)	Cyclical variations
76.	Movi	ng average method of fitting trend in a	time	series data removes the effect of
	(A)	long - term movements	W.	short - term movements
* 75	(C)	cyclical variation	(D)	irregular variation
			, A	
77.	The g	cometric mean of Laspyre's and Paas	che's p	rice indices is also known as
	VI	Fisher's Price Index		보레다 그 맛요!! 먹는 말라요!
	(B)	Marshall – Edgeworth Price Index		
	(C)	Dorbish – Bowley's Price Index		
	(D)	Kelley's Price Index		
7 8.	In ec	conomics and business the index numb	ers are	e classified into — types.
	(A)	Two	(B)	Three
	S	Four	(D)	Five
			9	그렇게 하는 것 보는 사용하다
79.	Qua	rterly fluctuations observed in a time s	series 1	represent — variation.
	(A)	cyclic	(B)	irregular
	(0)	seasonal	(D)	trend
80.		at type of index number can help the appropriate economic measures to con-		nment to formulate its price policies and t
	(A)	Whole sale price index	- (B)	Quantity index
	(C)	Price index	V)	Consumer price index

- 81. The method used for measuring seasonal variations are
 - (A) Method of moving averages
 - (B) Method of semi averages
 - Ratio-to moving average method
 - (D) Method of least square
- 82. Among the following various methods which method is suitable for measuring trend values
 - (A) Free hand method

- (B) Moving average method
- (C) Simple average method
- Both (A) and (B)
- - Period of oscillation

(B) Seasonal fluctuations

(C) Cyclic fluctuations

- (D) Curvilinear trend
- 84. Adjustments practices while editing the time series data for analysis in
 - (A) Quality variation

Price variation

(C) Locality variation

- (D) Quality, price, and locality
- 85. Geometric mean gives weight to equal ratio of changes
 - (A) Random

(B) Proportional

Equal

- (D) Unequal
- 86. The condition for the factor reversal test to be satisfied with usual notation is
 - (A) $P_{01} \times P_{10} = 1$

(B) $P_{01} \times Q_{01} = 1$

 $P_{01} \times Q_{01} = \frac{\sum p_1 \ q_1}{\sum \ p_0 \ q_0}$

- (D) $P_{01} \times Q_{01} = \frac{\sum p_1 \ q_1}{\sum p_0 \ q_1}$
- 87. What function is used to test the missing observation in data frame?
 - (A) Missing.na()

(B) na.missing()

(C) is.nan()

() is.na()

		actively with 'R'		
h	(A)	Shell	(B)	EAC
	101	E macs	(D)	Util states
g á	* Q.		E 5 H	
89.	Wha	t would the following code print?		
7.	> X	<-C ("a,", "b", "c")		
	> as.	logical (X)		그 그는 게 없는다고 있다면요? 기계없다
	A	NA NA NA	(B)	WXYZ
	(C)	abc	(D)	123
			*	
90.	Attri	butes of an object (if any) can be accuse	ed usir	ng the ———— function
	W	attributes()	(B)	obj:attributes()
	(C)	attributes.obj()	(D)	obj.stats()
	3 1 6			
91.	Whic	ch of the following will start the R progr	ram?	
	I	\$ R	(B)	R
	(C)	* R	(D)	@ R
. 8				
92.	Give 1980	n the parabolic trend equation in $Y =$ as origin, the equation of the parabola	25 + 1 with	$0X + 3X^2$ based on year to year data and 1984 as origin will be
92.	Give 1980	as origin, the equation of the parabola	25 + 1 with	$0X + 3X^2$ based on year to year data and 1984 as origin will be
92.	1980	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$	25 + 1 with	$0X + 3X^2$ based on year to year data and 1984 as origin will be
92.	1980 (B)	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$	25 + 1 with	$0X + 3X^2$ based on year to year data and 1984 as origin will be
92.	(B) (C)	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$ $\hat{Y} = 112 + 15X + X^2$	25 + 1 with	$0X+3X^2$ based on year to year data and 1984 as origin will be
92.	1980 (B)	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$	25+1 with	$0X+3X^2$ based on year to year data and 1984 as origin will be
92.	(B) (C)	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$ $\hat{Y} = 112 + 15X + X^2$	25+1 with	$0X+3X^2$ based on year to year data and 1984 as origin will be
	(B) (C) (D)	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$ $\hat{Y} = 112 + 15X + X^2$	with	$0X+3X^2$ based on year to year data and 1984 as origin will be
	(B) (C) (D)	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$ $\hat{Y} = 112 + 15X + X^2$ $\hat{Y} = 30 + 10X + 4X^2$	with	$0X + 3X^2$ based on year to year data and 1984 as origin will be
	(B) (C) (D)	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$ $\hat{Y} = 112 + 15X + X^2$ $\hat{Y} = 30 + 10X + 4X^2$ primary 'R' system is available from the	with	1984 as origin will be
92.	(B) (C) (D)	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$ $\hat{Y} = 112 + 15X + X^2$ $\hat{Y} = 30 + 10X + 4X^2$ primary 'R' system is available from the CRAN	with e (B)	GRWO
93.	(B) (C) (D) The	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$ $\hat{Y} = 112 + 15X + X^2$ $\hat{Y} = 30 + 10X + 4X^2$ primary 'R' system is available from the CRAN	with e (B)	GRWO
	(B) (C) (D) The	as origin, the equation of the parabola $\hat{Y} = 113 + 34X + 3X^2$ $\hat{Y} = 115 + 20X + 2X^2$ $\hat{Y} = 112 + 15X + X^2$ $\hat{Y} = 30 + 10X + 4X^2$ primary 'R' system is available from the CRAN GNU	with e (B)	GRWO

- 95. Which is the feature of inserting cells by dragging numbers in MS Excel?
 - Auto fill

(B) Auto count

(C) Auto cell

- (D) Auto text
- 96. Let the regression equations of Y on X and X on Y are $Y = \alpha X + \beta$ and $X = \theta Y + \delta$ respectively. Then the ratio of the variances of X and Y is
 - θΙα

(B) $\sqrt{\theta/\alpha}$

(C) $\sqrt{\alpha/\theta}$

(D) α/θ

- 97. For Cauchy population
 - (A) The sample mean is an unbiased and consistent estimator of the population mean
 - (B) The sample mean is biased and consistent estimator of the population mean
 - The sample median is an unbiased and consistent estimator of the population mean
 - (D) The median is unbiased and not consistent estimator of the population mean
- 98. Let t_n be an estimator based on a sample $x_1, x_2, ... x_n$ of the parameter θ . Then t_n is a consistent estimator of θ if
 - (A) $P(t_n \theta > \theta) = 0 \ \forall \varepsilon > 0$

- (B) $P(t_n \theta | < \epsilon) = 0$
- $\lim_{n\to\infty} P[|t_n-\theta|>\in]=0\,\forall\,\varepsilon>0$
- (D) $\lim_{n\to\infty} P[t_n-\theta>\in] = 0 \ \forall \varepsilon>0$
- 99. In Cramer-Rao inequality, the information limit to the variance of the estimator t is given by
 - (A) $1/E\left(\frac{\partial \log L}{\partial \theta}\right)$

 $1/E \left(\frac{\partial \log L}{\partial \theta} \right)^2$

(C) $E\left(\frac{\partial \log L}{\partial \theta}\right)$

- (D) $E\left(\frac{\partial^2 \log L}{\partial \theta}\right)$
- 100. For a log normal distribution the r^{th} moment about origin is
 - (A) $\exp\left(\mu + \frac{r^2\sigma^2}{2}\right)$

(B) $\exp\left(\mu r + \frac{r^2\sigma^2}{2}\right)$

 $\exp\left(\mu r^2 + \frac{r^2\sigma^2}{2}\right)$

(D) $\exp\left(\mu^2 r^2 + \frac{r^2 \sigma^2}{2}\right)$

- If $A \subset B$, the probability, P(A/B) is equal to 101.
 - (A) Zero

(C) P(B)/P(A)

- If an event B has occurred and it is known that P(B)=1, the conditional probability 102. P(A/B) is equal to
 - P(A)

(B) P(B)

One .

- (D) Zero
- 103. From a pack of 52 cards four cards are drawn at random, which of the following is the probability that two black and two red are drawn

 $\frac{26C_2 \times 26C_2}{52C_4}$

- (D) $\frac{13C_2 \times 26C_2}{52C_2}$
- If four cards are drawn at random from a pack of 52 cards, then the chance of getting two 104. kings and two queens is
 - (A) $\frac{4C_2 + 4C_2}{52C_4}$

 $\frac{4C_2 \times 4C_2}{52C_4}$

(C) $\frac{13C_2 \times 13C_2}{52C_4}$

- (D) $\frac{13C_4}{52C}$
- 105. Flip a coin and then independently cast a die. What is the probability of observing heads on the coin and a 2 or 3 on a die?
 - (A) 1/3

(C) 1/4

- If X and Y two independent variables and their expected values are \overline{X} and \overline{Y} respectively, 106. then which of the following is true
 - (C) $E\{(X-\overline{X})(Y-\overline{Y})\}=0$ $E\{(X-\overline{X})(Y-\overline{Y})\}=-1$

(B) $E\{(X-\overline{X})(Y-\overline{Y})\}=1$

(D) $E\{(X-\overline{X})(Y-\overline{Y})\}=C$ (Constant)

- 107. With usual notations, if $P(A \cup B) = 7/10$ $P(A \cap B) = 2/5$ and P(A/B) = 2/3, then P(A) = 2/3
 - (A) P(A) = 0.65

(B) P(A) = 0.55

P(A) = 0.50

- (D) P(A) = 0.60
- 108. One ticket is selected at random from 100 tickets numbered from 0, 1, 2,....99. If X and Y denote the sum and product of the digit, on the tickets then P(X=9/Y=0)=
 - (A) 3/19

2/19

(C) 4/19

- (D) 5/19
- 109. If A and B are two independent events such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{1}{5}$ then $P(A/A \cup B) = \frac{1}{5}$
 - 5/6

(B) 3/5

(C) 1/2

- (D) 0
- 110. A two-dimensional random variable (X,Y) have a bivariate distribution given by
 - $P(X=x;Y=y)=\frac{x^2+y}{32}$; x=0,1,2,3; y=0,1 then the sum of their marginal distributions of X is
 - (A) 1/32

(B) 9/32

(C) 3/32

- 1
- 111. If the probability density function of the random variable X is
 - $f(x) = \begin{cases} (1-p)^{x-1}, p & \text{if } x = 1, 2, \dots, \infty \\ 0, & \text{otherwise} \end{cases}$
 - The expected value of X is
 - (A) p

(C) q

(D) $\frac{1}{q}$

112. If Var(X+Y)=3, Var(X-Y)=1 E(X)=1 and E(Y)=2, then the value of E(XY) is

W !

(B) $\frac{1}{2}$

(C) $\frac{3}{2}$

(D) 1

113. If $f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}$, $-\infty < x < \infty$ then E(X) =

(A) $E(X) = \pi$

(B) $E(X) = \frac{1}{1+x^2}$

(C) E(X)=1

E(X) does not exist

114. Given E(X+C)=8 and E(X-C)=12, then the value of C is

-2

(B)

(C) -4

(D) 2

115. Let 'X' be a random variable with the following probability distribution

- x –3
- 6 9
- P(X=x) 1/6 1/2 1/3

Then the value of $E(X^2)$ is

 $\frac{93}{2}$

(B) $\frac{11}{2}$

(C) $\frac{25}{2}$

(D) $\frac{90}{2}$

116. The probability distribution of two random variable X and Y is given by

 $P(X=0,Y=1)=\frac{1}{3},\ P(X=1,Y=1)=\frac{1}{3},\ P(X=1,Y=-1)=\frac{1}{3}$. Then the conditional probability of P(X=1/Y=1)

(A) $\frac{1}{4}$

(B) 0

(C) $\frac{1}{3}$

 $\frac{1}{2}$

- 117. The skewness in a binomial distribution will be zero if
 - (A) $p < \frac{1}{2}$

 $p = \frac{1}{2}$

(C) $p > \frac{1}{2}$

- (D) p < q
- 118. For n>4 and n<30, the t-distribution curve with regard to peakedness is
 - (A) Mesokurtic

(B) Platykurtic

Leptokurtic

- (D) Bimodal
- 119. If $X_1 \sim X_{(n_1)}^2$ and $X_2 \sim X_{(n_2)}^2$ then the pdf of $Z = (X_1/X_2)$ is (Assume X_1 and X_2 are independent)
 - (A) $\beta_1\left(\frac{n_1}{2}, \frac{n_2}{2}\right)$

(B) $\beta_1(n_1, n_2)$

 $\beta_2\!\!\left(\frac{n_1}{2},\frac{n_2}{2}\right)$

- (D) $\beta_2(n_1, n_2)$
- 120. The characteristics function of Cauchy distribution is
 - $\varphi_X(t) = e^{-|t|}$

(B) $\varphi_X(t) = -e^{-|t|}$

(C) $\varphi_X(t) = e^{-it}$

- (D) $\varphi_X(t) = e^{it}$
- 121. Let g(X) be non-negative function of a random variable X. Then for every K > 0
 - (A) $P[g(X) = K] = \frac{E[g(X)]}{K}$
- (B) $P[g(X) \ge K] \ge \frac{E[g(X)]}{K}$
- (C) $P[g(X) \le K] \le \frac{E[g(X)]}{K}$
- $P[g(X) \ge K] \le \frac{E[g(X)]}{K}$
- 122. If the moments of variate X are defined by $E(X^2) = 0.6$, r = 1, 2, 3,... The value of P(X = 0) is
 - (A) 0.2

(B) 0.3

0.4

(D) 0.6

123. The Moment Generating function of a rectangular distribution with parameters 'a' and 'b'

$$M_X(t) = \frac{e^{bt} - e^{at}}{t(b-a)}, t \neq 0$$

(B)
$$M_X(t) = \frac{e^{at} - e^{bt}}{(b-a)}, b \neq a$$

(C)
$$M_X(t) = \frac{e^{at} - e^{bt}}{(a-b)}, a \neq b$$

(D)
$$M_X(t) = \frac{e^{-at} + e^{-bt}}{t(b-a)}, t \neq 0$$

- The probability that the fifth head is observed on the 10th independent flip of a coin is:

 $\frac{53}{512}$ (C)

- The Moment generating function of the random variable X whose pdf is given by 125. $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{otherwise} \end{cases}$. The M(X) is
 - $(1-t)^{-1}$

(B) $(1-t)^{-2}$ (D) $(1-t)^2$

(1-t)

- A rv X has a Poisson distribution with a Mean of 3. The probability that X is bounded by 126. 1 and 3 is, $p(1 \le X \le 3)$ is
 - $12e^3$ (A)

 e^3 (C)

- If $X \sim B(5, p)$ and If p(X = 1) = 0.4096 and p(X = 2) = 0.2048 then the value of 'p' is 127.

(B) $\frac{3}{5}$

(C) $\frac{4}{5}$

- 128. If $\hat{\theta}$ is the estimator of the parameter θ , then $\hat{\theta}$ is called unbiased if
 - (A) $E(\hat{\theta}) > \theta$

(B) $E(\hat{\theta}) < \theta$

(C) $E(\hat{\theta}) \neq \theta$

- $E(\hat{\theta}) = \theta$
- 129. Mean squared Error of an estimator T_n of $\tau(\theta)$ is minimum only if
 - (A) Bias and $Var_{\theta}(T_n)$ both are zero
 - (B) Bias is zero and $Var_{\theta}(T_n)$ is minimum
 - Bias is minimum and $Var_{\theta}(T_n)$ is zero
 - (D) Both bias and variance is minimum
- 130. If an estimator T_n of a population parameter θ converges in probability to ' θ ' as n tends to ∞ , then T_n is said to be ———— estimator.
 - (A) Unbiased

(B) Sufficient

Consistent

- (D) Efficient
- 131. Let $\{T_n\}$ be a sequence of estimators for all $\theta \in \Theta$. Then T_n is a consistent estimator of $\gamma(\theta)$, iff
 - $E_{\theta}(T_n) \to \gamma(\theta), \operatorname{var}_{\theta}(T_n) \to 0 \text{ as } n \to \infty$
 - (B) $E_{\theta}(T_n) \to \gamma(\theta)$ as $n \to \infty$
 - (C) $\operatorname{var}_{\theta}[T_n] \to 1 \text{ as } n \to \infty$
 - (D) $\operatorname{var}_{\theta}[T_n] \to E_{\theta}(T_n) \text{ as } n \to \infty$
- 132. Identify the name of the theorem stated below $V_{\theta_o}(T) \ge \sup_h \left[\frac{\left\{ \varphi(\theta_0 + h) \varphi(\theta_0) \right\}^2}{E_{\theta_0} \left[\left\{ \frac{p_{\theta_0} + h(X)}{p_{\theta_0}(X)} 1 \right\} \right]^2} \right]$
 - (A) Cramer Rao Inequality
 - (B) Lehman Scheffe theorem
 - (C) Rao Blackwell theorem
 - Chapman Robbins Inequality

133.		ose that there are 500 Accounts in a population, a sample 50 of them gives a sample as 5000. What would be your estimate for the population total?
	US)	50,000 (B) 5,000
4	(C)	2,50,000 (D) 5,00,000
134.	For a	random sample from a Poisson population $P(\lambda)$, the maximum likelihood estimate of
	λ is	
	(A)	Median (B) Mode
	(C)	Geometric Mean Mean
9		
135.	The r	method of minimum variance approach is based on
	4	Unbiasedness and Minimum variance
	(B)	Unbiasedness and Consistency
	(C)	Consistency and Minimum variance
	(D)	Consistency and Sufficiency
		원이 지금하는 그 모두 하실 때 사람이 가능하다 이 생생이 가고 하다고 있다. 경기
136.	Mean	square error of estimator obtained by the method of minimum Chi-square is
	Upon the same of t	Less than ML Estimator
	(B)	Equal to ML Estimators
	(C)	More than ML Estimators
	(D)	More than or equal to ML Estimators
137.	S.D.	ndom sample of 16 male students has an average body weight of 52 kg and a of 3.6 kg. The 99% central confidence limits for body weight is at $(t_{15,0.01}) = 2.951$
	U.S	(54.66; 49.345) (B) (52.66; 51.34)
27	(C)	(55.28; 48.72) (D) (56.72; 50.45)
138.	The h	hypothesis is true but the test rejects if means
	(A)	Correct decision Type I error
	(C)	Type II error (D) Wrong decision

- provides a most powerful test of simple null hypothesis against a simple alternative hypothesis
 - (A) Likelihood Ratio test
 - (B) Chapman Robbins Inequality
 - Neymann Pearson lemma
 - (D) Factorization theorem
- The maximum likelihood estimate is 140.
 - (A) minimum of α in the parameter space
 - (B) maximum of α not necessarily in the parameter space
 - maximum of α in the parameter space
 - (D) minimum of α not necessarily in the parameter space
- If L_0 is the likelihood function of the sample observations under H_0 and L_1 is the likelihood function of the sample observations under H_1 , the probability of type II error is given by
 - $\beta = \int_{w} L_{1} dx$ (C) $\beta = \int_{\overline{w}} \frac{L_{0}}{L_{1}} dx$

- (D) $\beta = \int_{0}^{\infty} L_0 dx$
- 142. To test a hypothesis involving proportions np and n(1-p) should
 - be atleast 30
 - be greater than 5
 - let in the range of 0 to 1 (C)
 - (D) be greater than 50
- of the sample. Sign test is related to testing of
 - mean, mode

(B) mode, median

mean, median

- (D) mean, S.D.
- Which of these non-parametric tests is equivalent to the paired-t-test in parametric tests?
 - Sign test

Median test (B)

Kruskal Walli's test (C)

(D) Run test

- 145. If each value of X is multiplied by 10 and of Y by 20, b_{xy} , the regression co-efficients by coded values is
 - (A) same as b_{xy}

 \bigcirc half of b_{xy}

(C) four times of b_{rv}

- (D) thirty times of b_{xy}
- 146. The method of least squares finds the best fit line that the error between observed and estimated points on the line are
 - (A) approaches to infinity

(B) minimize or maximize

minimize

- (D) maximize
- 147. If generated value of tolerance is equals to 1 it is an indication of
 - (A) low multicollinearity
 - perfect multicollinearity
 - (C) no multicollinearity
 - (D) high multicollinearity
- 148. Angle between the two lines of regression is given as
 - (A) $\tan \theta = r \left[\frac{\sigma_x \sigma_y}{\sigma_x + \sigma_y} \right]$

- (B) $\tan \theta = r^2 \left[\frac{\sigma_{x^2} \sigma_{y^2}}{\sigma_{x^2} + \sigma_{y^2}} \right]$
- $\tan \theta = \frac{1 r^2}{r} \left[\frac{\sigma_x \, \sigma_y}{\sigma_{x^2} + \sigma_{y^2}} \right]$
- (D) $\tan \theta = \frac{1}{r} \left[\frac{\sigma_x \, \sigma_y}{\sigma_x + \sigma_y} \right]$
- 149. If R^2 is zero, that is no multicollinearity, the variance inflation factor (VIF) will be
 - on

(B) zero

(C) two

- (D) three
- 150. A regression model of the following form was developed $\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_1^3 + \varepsilon$ Which of the following best describes the form of this period?
 - 3rd order polynomial model
 - (B) Tri-slope regression model
 - (C) 3rd level regression model
 - (D) Quadratic model

151. For two variables X and Y the equations of the regression lines are 9y - x - 288 = 0 and x - 4y + 38 = 0. The correlation coefficient between X and Y is

(B) $\frac{1}{9}$

(C)
$$\frac{3}{2}$$

(D) $\frac{1}{36}$

- 152. If the population consists of a linear trend y_i , i = 1, 2,...,k, then
 - (A) $\operatorname{var}(\overline{y}_{st}) = \operatorname{var}(\overline{y}_{sys}) = \operatorname{var}(\overline{y}_n)_R$
 - (B) $\operatorname{var}(\overline{y}_{st}) \ge \operatorname{var}(\overline{y}_{sys}) \ge \operatorname{var}(\overline{y}_n)_R$

- (D) $\operatorname{var}(\overline{y}_{sys}) \leq \operatorname{var}(\overline{y}_{st}) \leq \operatorname{var}(\overline{y}_n)_R$
- 153. A population is perfectly homogenous in respect of a characteristic. What size of sample would you prefer?

(B) whole item

(C) a small sample

- (D) a large sample
- 154. In systematic sampling, if $N \neq nk$, then the unbiased estimate of \overline{y}_n is
 - (A) $\hat{y}_N = \frac{N}{K} \sum_{i=1}^{n'} y_{ij}$

 $\hat{y}_N = \frac{K}{N} \sum_{i=1}^{n'} y_{ij}$

(C) $\hat{y}_N = \frac{N-1}{K} \sum_{j=1}^{n'} y_{ij}$

- (D) $\hat{y}_N = \frac{N}{K-1} \sum_{i=1}^{n'} y_{ij}$
- 155. ———— used a regression of leaf area on leaf weight to estimate the average area of the leaves on a plant.
 - (A) Olkin

(B) Keyfitz'

Watson

(D) Yates

	2	
156.	Whic	h one problem out of the four is not related to stratified sampling?
	(A)	fixing the criterion for stratification
	(B)	fixing the number of strata
		fixing the sample size
	(D)	fixing the points of demarcation between strata
157.	In w	hich of the methods the entire population is divided into a number of homogeneous
	- COM	stratified random sampling
	(B)	simple random sampling
	(C)	cluster sampling
	(D)	two stage sampling

- les
 - less efficient

(B) more efficient

(C) equal efficient

(D) no efficient

(A) N

(B) $\frac{1}{\sqrt{N}}$

 $\frac{1}{N}$

(D) 'N!

(A) replications

(B) experiments

- (0)
- blocks

(D) treatments

- 161. The degrees of freedom for Error in CRD is
 - (A) n-1

(B) $\nu - 1$

(C) n-4

 $n-\nu$

- 162. A Latin square design controls
 - two way variation

(B) three way variation

(C) multi way variation

- (D) one way variation
- 163. If the entries in rows of a Latin square are same as its columns, the Latin square is called
 - (A) Conjugate

(B) Orthogonal

(C) Symmetric

- Self conjugate
- 164. Let $\{X_n\}$ be a sequence of random variables and $\mu_1, \mu_2, ..., \mu_n$ be their respective expectations and $B_n = V\left(\sum_{i=1}^n X_i\right) < \infty$ then $P\left\{\left|\overline{X}_n \overline{\mu}_n\right| < \epsilon\right\} \ge 1 \eta$ for all $n > n_0$ provided.
 - (A) $\lim_{n\to\infty} \frac{B_n}{n^2} \to \text{constant}$
- $\lim_{n\to\infty}\frac{B_n}{n^2}\to 0$

(C) $\lim_{n\to\infty} \frac{B_n}{n^2} \to 1$

- (D) $\lim_{n\to\infty} \frac{B_n}{n^2} \to \overline{X}_n$
- 165. Write the sum of squares due to Error for CRD
 - (A) $S.S.E = \sum_{i=1}^{r_i} (y_{ij})^2 = (\overline{y}_{i.})^2 = SE^2$
 - (B) $S.S.E = \sum_{i} \sum_{j} y_{ij}^2 = (y_{..})^2$
 - $S.S.E = \sum_{i} \sum_{j} (y_{ij} \overline{y}_{i.})^2 = SE^2$
 - (D) $S.S.E = \sum_{i} \sum_{j} (\overline{y}_{i.} \overline{y}_{..})^2 = SE^2$

- 166. The cubic effect among five treatments can be estimated by the contrast
 - $-T_1 + 2T_2 2T_4 + T_5$

(B) $2T_1 - T_2 - 2T_3 - T_4 + 2T_5$

- (C) $-2T_1 + 3T_2 3T_3 + 2T_5$
- (D) $T_1 2T_2 2T_4 T_5$
- 167. When there is no defective in the lot, the operating characteristic function for p = 0 is
 - (A) L(0) = 0

L(0) = 1

(C) $L(0) = \infty$

- (D) $L(0) = \pm 1$
- 168. The sum of independent gamma variate is a
 - (A) Beta variate
 - Gamma variate
 - (C) Normal variate
 - (D) Cauchy variate
- 169. A sequential sampling plan is
 - (A) an infinite process
 - a process in which sampling terminates with probability one
 - (C) the process requiring much more sampling units than a fixed size sample
 - (D) a process in which sampling terminates with probability .5
- 170. A single sampling plan is a lot sentencing procedure in which one sample of ______ units is selected at random from the lot.
 - (A) n-1

(B) n

W N

- (D) $\frac{n}{N}$
- 171. When a lot contains all defectives, the OC function for p = 1 is
 - L(p) = 0

(B) L(p) = 1

(C) $L(p) = \infty$

(D) L(p) = 0 to 1

- 172. In statistical quality control the symbol ' α ' refers
 - (A) Acceptable Quality Level
- (B) Rejectable Quality Level

(C) Consumer's risk

- (Producer's risk
- 173. The six sigma quality level means
 - (A) 3.4 defects per one lakh opportunities
 - (B) 3.0 defects per one thousand opportunities
 - (C) 3.4 parts per million defects
 - 3.4 defects per one million opportunities
- 174. The chart which is used to show the quality averages of the samples drawn from a given process is known as
 - (A) R chart

(B) σ chart

(C) P chart

- $\mathcal{F} \quad \overline{X} \text{ chart}$
- 175. The various types of trends are divided under heads.
 - (A) Three

(B) Five

Two

- (D) Four
- 176. Given the equation $\hat{Y} = 54 + 3.6X$ with 1981 as origin and $X = \frac{1}{2}$ year and Y units in terms of annual production, the monthly trend equation is

$$\hat{Y} = 4.5 + 0.5X$$

(B)
$$\hat{Y} = 5.0 + 0.7X$$

(C)
$$\hat{Y} = 5.2 + 0.9X$$

(D)
$$\hat{Y} = 4.8 + 0.3 X$$

- 177. A time series consists of data arranged in
 - (A) Geographically

Chronologically

(C) Qualitatively

- (D) Quantitatively
- 178. The unweighted price index formula is

(B)
$$P_{01} = \frac{\sum p_1}{\sum q_1} \times 100$$

(C)
$$P_{10} = \frac{\sum p_0}{\sum p_1} \times 100$$

(D)
$$P_{01} = \frac{\sum p_1}{\sum q_0} \times 100$$

79.	When	n the prices of rice are to be compared	we con	npute
	(A)	quantity index	(25)	price index
	(C)	constant volume index	(D)	value index
n e ^x				
80.	Mars	shall and Edgeworth price index utilis	es the v	weights as
٠,	Jun 1	combined quantities of base and give	en year	
	(B)	quantities of base year		
	(C)	quantities of given year		
	(D)	combined price of base and given yes	ar	
81.	Most	preferred value of homogeneity error	'R' wit	h reference to index number in
	(A)	1	0	0
	(C)	∞	(D)	-1
			9 1	
182.	The a	adjustment factor used to deflate the g	ross n	ational product is known as
	4	Deflator index numbers		Cost of living index
	(C)	Consumer index	(D)	Recast, index number
	251 (E)			
183.	Tren	d in a time series means		
	The same of the sa	Long-term regular movement		
	(B)	Short-term regular movement		
	(C)	Both (A) and (B)		
,	(D)	Neither (A) nor (B)		
184.	Simr	ole average method is used to calculate	ρ.	
	(A)	Trend values		Seasonal indices
1	(C)	Cyclic variations	(D)	Irregular variations
	X-7			
185.	W/L =	at anon hadlu dame - d		
100.	(A)	at crop badly damaged on account of r Cyclic component	ain in	Pandam company
	(A) (C)	Secular trend	(D)	Random component
	(0)	Decural fresht	(D)	Seasonal component

186. Link relatives in a time series remove the influence of

(B) cyclic variation

(C) irregular variation

- (D) seasonal variation
- 187. For the function f < function (X)

$$g < -$$
 function (Y) {

$$Y + Z$$

}

$$Z < -4$$
$$X + g(X)$$

}

If you execute : > Z < -10

> f(4), what is the output?

- 12
- .(B) 7
- (C) 4
- (D) 16
- 188. In a Poisson distribution with unit mean, the mean deviation about mean is
 - (A) 2 × standard deviation

(B) $\frac{3}{e} \times \text{standard deviation}$

- $\frac{2}{e}$ × standard deviation
- (D) $\frac{1}{\rho} \times \text{standard deviation}$
- 189. A key property of vectors in R is that
 - (A) A vector cannot have attributes like dimensions
 - (B) Elements of a vector can be different classes
 - (C) Elements of a vector can only be character or numeric
 - Elements of a vector all must be of the same class

- 190. The errors emerging out of faulty planning of surveys are categorised as
 - (A) Sampling errors

Non-sampling errors

(C) Non-response errors Absolute errors

- Match the following 191.
 - Group control charts

 - Warning limits on \overline{X} control chart
 - Reject limits
 - Cusum chart (d)
 - (a) (b)
- (c)

(d)

1

3

- - 3
- 3
- 2 1

- 1. are called as modified control limits
- 2. number of sub groups from different sources are combined in single simplified chart
- V shaped mask is used for detecting a change quickly
- 4. . $\pm 2\sigma$ and $\pm 3\sigma$

- If for 20 sub groups, ΣR = 9.90 and $d_{\rm 2}$ = 3.7, then the process capability is 192.
 - 7.4(A)

(C) 6

- 0.14
- In a SPRT, the criterion for acceptance of the lot with usual notations is

(B) $\lambda_m \geq \frac{\beta}{1-\alpha}$

(D) $\lambda_m \geq \frac{1-\beta}{\alpha}$

194.	The I	function in R for finding the correlati	on coef	ficient between X and Y is
	(A)	Corr (X, Y)	(B)	Cor 2 P cor (X, Y)
	(C)	P cor 2 cor (X, Y)	DY	Cor (X, Y)
195.	Who	developed R?		
1	(A)	Dennis Ritchie	0	John chambers
	(C)	Bjarne Stroustrup	(D)	James Gosling
			,	
196.	To fir	nd the arithmetic mean of list of value	es in M	S-Excel, the function ————————————————————————————————————
	Sugar	average()	(B)	mean()
	(C)	daverage()	(D)	Xbar()
197.	For a	set of data given an interval, the free	quency	of observations with in the interval is given
	(A)	COUNT (value 1, value 2,)		
	(D)	= FREQUENCY (Range of DATA, R	ange of	BINS)
	(C)	FREQUENCY (Range of BINS, Ran	ge of D	ata)
	(D)	FDIST (Range of Data, Range of BI	NS)	
		# 1 1 M H	3	
198.	In M	S Excel, what type of chart is useful for	or comp	paring values over categories?
	(A)	Pie chart	(B)	Dot graph
,	SHOW	Bar chart or column chart	(D)	Line chart
	. 4-			
199.	Whic	h function is used to calculate remain	der in l	MS Excel?
	(A)	INT()	(B)	FACT()
		MOD()	(D)	DIV ()
	8			
200.	The o	cell reference for cell range of A2 to M	12 is	
	(A)	A 2 ! M 12	(B)	A 2 . M 12
	(C)	A 2; M 12	1	A 2: M 12
	- 1 ~~v			

Δ

STPG/19 [Turn over