ACFENE

.•	Register No.			·
1		<u> </u>		

2018

ELECTRONICS ENGINEERING

Duration: 3 Hours Max. Marks: 300

General Instructions to the Applicants:

- i) This Question Paper is descriptive type in Degree Standard.
- ii) There is no reservation of marks for neatness of execution and correctness of spelling in respect of this paper.

ACFENE

ELECTRONICS ENGINEERING

PART — A

- Note: i) Answer not exceeding 50 words each.
 - ii) Each question carries three marks.
 - iii) Answer any thirty questions only out of thirty five Questions.

$$(30 \times 3 = 90)$$

- 1. What are semiconductors? Indicate the method of classification of semiconductors.
- 2. Explain Intrinsic and Extrinsic semiconductors with examples.
- 3. List the applications of a semiconductor in modern electronic circuits.
- 4. What are opto electronic devices? Explain about the classification involved.
- 5. Differentiate between continuous and discrete time signal. Give an example for each of them.
- 6. State Fourier Transform pair for continuous time aperiodic signal.
- 7. Consider a causal LTI system with frequency response $H(jw) = \frac{1}{3+jw}$. For a particular input x(t) this system is observed to produce the output $y(t) = e^{-3t} u(t) e^{-4t} u(t)$. Determine x(t).

- 8. Let $X(F) = 4 2 e^{-j4\pi F}$. If. y(n) = x(n-2). Find Y(F) and compute Y(F) at F = 0.2.
- 9. What is an Amplifier? Indicate how the transistor amplifier is classified based on i/p and transistor configuration.
- 10. Write the advantages and disadvantages of impedance coupled amplifiers.
- 11. Mention about the applications of OP-AMP.
- 12. Draw the damped and undamped curves of an oscillator.
- 13. State Biot-Savarts law.
- 14. Compute divergence of the vector $\overline{F} = x^2 \overline{i} + 2 \overline{j} + yz \overline{k}$ at that point (1, 1, 1).
- 15. State Stoke's theorem.
- 16. A plane electromagnetic wave is propagating through free space with a peak value of E = 100 V/m. Find the corresponding value of H.
- 17. State the principle of operation of a Rake receiver.
- 18. Mention the key process of Laser action.

- 19. What is MAHO and state in which generation mobile communication systems it is used?
- 20. When is Doppler shift positive and negative in a mobile communication system?
- 21. What is the effect of windowing in the design of FIR filters?
- 22. What is meant by zero-input limit cycle oscillations?
- 23. Histograms are popular tool for real time Image Processing. Justify.
- 24. What do Mach bands indicate?
- 25. List some of the techniques used for addition in VLSI design.
- 26. Draw a circuit to compute F = AB + CD using CMOS devices.
- 27. State the advantages of modified booth multiplier.
- 28. Show how to design a low power circuit using ARM processor?

- 29. Give the control signals associated with data transfer in memory.
- 30. List out the methods used for systematic design of hardwired control unit.
- 31. Mention any three characteristics of RAM.
- 32. Give any three postulates used to formulate various algebraic structures.
- 33. Consider a causal LTI system whose input x(n) and output y(n) are related through the block diagram representation as shown in the following figure.

Determine difference equation.

- 34. If the clock frequency is 5 MHz, how much time is required to execute an instruction of 18 T-states?
- 35. What is the need for anti-imaging filter after upsampling a signal?

PART - B

- Note: i) Answer not exceeding 100 words each.
 - ii) Each question carries eight marks.
 - iii) Answer any fifteen questions only out of eighteen Questions.

 $(15 \times 8 = 120)$

- 36. State and prove the following properties of Laplace Transform.
 - (a) Differentiation
 - (b) Integration.
- 37. Compare Transistor and Thyristor.
- 38. What is an IC? Write its advantages and disadvantages.
- 39. Find the current through the 10Ω resistance in the circuit shown below. Use Theyenins theorem.

40.

Determine the current through $\gamma = 5\Omega$ resistor using nodal method.

- 41. Draw the circuit diagram of a CB amplifier and explain its working.
- 42. For the CC amplifier in the circuit, compute
 - (a) r'_{in}
 - (b) r_0'
 - (c) A_V and A_P .

Take transistor $\beta = 100$, Neglect V_{BE} and use $r_e = 25 \,\mathrm{mV/BE}$

- 43. Apply ampere's circuital law to calculate magnetic field intensity inside a current carrying toroid.
- 44. Calculate the length of the half wave dipole antenna meant to have correct half-wave length at 80 MHz whose Q is 40. Also calculate bandwidth.
- 45. Compute the DFT of a sequence $(-1)^n$ for N=4.
- 46. Show that the up sampler and down sampler are time variant systems.
- 47. Describe practical handoff considerations.
- 48. Draw the block diagram of a setup for measuring VSWR and explain the step by step procedure.
- 49. Explain with an example how booth encoding is used to accelerate serial multiplication.
- 50. Outline the problems in modeling the processing of instructions in a multiprocessor system.
- 51. Draw the logic gate circuit diagram for the Boolean expression F(x, y, z) = x'y + y'z with the help of NOR gates.

- 52. Implement the following Boolean functions with NAND gates f(x, y, z) = (1, 2, 3, 4, 5, 7).
- 53. What is an energy band diagram? Draw and explain the same for insulators, conductors and semiconductors.

PART - C

- Note: i) Answer not exceeding 200 words each.
 - ii) Each question carries fifteen marks.
 - iii) Answer any six questions only out of nine questions.

 $(6 \times 15 = 90)$

54. Find the current through the 5Ω resistor in the circuit shown below using super position theorem.

and verify the result by using node analysis method.

- 55. Discuss in detail about the antenna parameters.
- 56. Give the conversion formulas from RGB to HSI model and vice-versa in image processing applications.

- 57. Explain the concepts of trunking and grade of service.
- 58. What are Active filters? Explain about any two type of Active filter.
- 59. What are Rectifiers? Explain the working principle of any two rectifier circuits.
- 60. Draw the internal block diagram of 8086 microprocessor and explain the various blocks.
- 61. Explain the features of the different Input / Output ports of 8051 microcontroller.
- 62. Design a Butterworth filter using the
 - (a) Impulse
 - (b) Bilinear transformation

in variance method for the following specifications.

$$0.8 \le |H(e^{jw})| \le 1 \qquad 0 \le w \le 0.2 \pi$$
$$|H(e^{jw})| \le 0.2 \quad 0.6 \pi \le w \le \pi$$

ACFENE