Sl. No.:

		$\mathbf{\Gamma} P$	ZIVI	D	1
Register Number				3	

2018

MARINE BIOLOGY (Degree Standard)

Time Allowed: 3 Hours]

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.

2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination it will not be replaced.

Answer all questions. All questions carry equal marks.

4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.

5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.

- 6. You will also encode your Question Booklet Number with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are **four** circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

A O C D

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.

11. Do not tick-mark or mark the answers in the Question Booklet.

- 12. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 13. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

1.	called	•	or nea	t require	ed to rais	se the ter	mpera	ature of 1 g of a substance 1 C (cang/ C) 1	5
	LAY	Heat	capacity	7		5	(B)	Latent heat of fusion	
	(C)	Laten	t heat o	f vapori	zation		(D)	Conduction of heat	
			~						
2.	A typ	oical exa	ample o	f an ano	xic basin	is			
	(A)	Dead	sea				(B)	Red sea	
	(C)	Medit	erranea	ın sea			DY	Black sea	
3	Mino	r consti	ituents	make up	about -		— ре	er cent of the dissolved salt in the oceans.	
	(A)	2.6 pe	r cent			*	(B)	0.9 per cent	
	S	0.1 pe	r cent				(D)	0.7 per cent	
	1								
4.		er is a a other lic		a ——	so	lvent, wi	ith th	ne ability of dissolve more substances tha	n
	(A)	Select	tive				(B)	Partial selective	
	Jan Jan	Unive	ersal		48	1. d	(D)	None of them	
5.	The	UNCLO	S (1982	2) stipul	ated tha	t within ?	200 n	nautical mile zone is called	
	(A)	Marin	ne Econ	omic Zon	ne		(B)	Coastal Regulation Zone	
	LEY	Exclu	sive Ec	onomic 2	Zone		(D)	Biodiversity Convention Zone	
6.	Mate	ch the fe	ollowing	3					
	(a)	Snail			1.	Zoea			
	(b)	Crab			2.	Veliger			
	(c)	Starfis			3.	Cypris	12		
	(d)	Barna	cle		4.	Bipinna	ıria		
		(a)	(b)	(0)	(4)				
	(A)	(a)	2	(c)	(d) 4				
	(D)	2	1	4	3				
	(C)	1	2	4	3				
	(D)	4	3	1	2				

		istence and commercia			es.	— to manage the
	(A)	1716		(B)	1816	. 10
	LOS	1946		(D)	2016	7 .
			3. 10. 10. 10.			
8.	The	Green algae belong to	the phylum			
	(A)	Rhodophyta		DY	Chlorophyta	
	(C)	Phaeophyta		(D)	Chrysophyta	
			* * * * * * *			
9.		e animals are able to pendently of salinity c			tion of their internal flu rocess is known as	ids within limits
	(A)	Steno thermal		(B)	Eurythermal	
	way	Osmo regulation		(D)	Poikilothermic	
10.	swim	includes all an	and the second s	of movin	g independently, of the	ocean currents by
	(A)	Phytoplankton		(B)	Diatoms	
	(C)	Coscinodiscus		Wy.	Nekton	
4		/				
11.	-	is an example fo	or heterotrophic	es.		
	(A)	Phytoplankton		VE	Zooplankton	
	(C)	Gymnodinium		(D)	Plants	
12.	The (Coral reefs remove abo	out	of carbo	n every year.	
	(A)	7 billion kilograms		(B)	70 billion kilograms	
	.C	700 billion kilograms	3	(D)	7000 billion kilograms	age star y
				1		

13.	Oxyge	en is toxic to
	(A)	Aerobic bacteria
	(B)	Anaerobic bacteria and facultative bacteria
	(C)	Facultative bacteria
	100	Anaerobic bacteria
14.	Differ	rential media
	w	Used to grow two different kinds of bacteria
	(B)	Used to enhance the growth of particular type of bacteria
	(C)	Used to grow all types of bacteria
96	(D)	Used to grow only pathogenic bacteria
15.	Large	est number of fish species occurs în
	(A)	Temperate zone
	(B)	Sub temperate region
	Way	Tropics
	(D)	Sub tropics
	8	
16.	In wh	nales, the limbs are modified into
	(A)	Neck (B) Fins
	Way	Flippers (D) None of these
	oc 3:	
17.	The f	following pollutants severely affects the sea turtle population
	(A)	Marine debris
	(B)	Fishing nets
	(C)	Plastics
	W	All the above

18.	Cage	s for mariculture can be		10 M
n.E	(A)	Hanging in the water body and in	movable	
	(B)	Fixed into the bottom		
	(C)	Immovable		
	4	Movable		
	* AC			
19.	Recir	culating aquaculture requires less	space whe	en compare to
	W	pond aquaculture		
	(B)	reservoir aquaculture		
	(C)	composite carp grow-out culture		1
	(D)	cage culture		
				2 22 7
20.	Piscio	cides for used to kill		
	(A)	insects	VBT	fishes
	(C)	bacteria	(D)	fungi
			1 2	
91	The b			
21.		ay clam is		•
	(A)	Katelysia opima		Meretrix meretrix
	(C)	Meretrix casta	(D)	Mytilus viridis

22.	Pearl	is produced by Pearl osyter as a —		— mechanism.
	(A)	Reproductive	(B)	Circulatory
	(C)	Respiratory	(D)	Defense

23.	Amm	onia oxidized to nitrite and then nitra	ate, thes	e oxidation processes v	which are termed
	(A)	Ammonification	(B)	Denitrification	
	Ver.	Nitrification	(D)	Reduction of nitrate to	nitrite
*		, i			
24.		ddition to inorganic micro nutrient		y species of phytopla ——— necessary for	
	(A)	amino acids	DY	vitamins	
	(C)	fatty acids	(D)	minerals	
25.		is the greatest challenge of m	angrove	s to climate change.	
	(A)	Lake level	VDY.	Sea level	
	(C)	River level	(D)	Pond level	
					14
26.	chem	olved organic matter in the sea car nical removal (b) chemical removal a ominates others			
	VA	Biological mechanism predominate	s over ot	hers	
	(B)	Chemical mechanism predominates	s over ot	hers	
	(C)	Physico – chemical processes predo	minates	over others	Av.
	(D)	Physical processes predominates of	hers		
	9				
27.	The	organic particulate matter in the sea	compris	es living organisms ma	ainly
	W	phytoplankton	(B)	detritus	
	(C)	zooplankton	(D)	none of them	
28.	Aver	rage concentration of the borate ions	in the se	a water is	
	1(A)	0.026‰ by weight	(B)	0.001‰ by weight	
	(C)	0.380‰ by weight	(D)	0.013‰ by weight	

20.		rae, which cause	ponsibi	le for the new numan pathogens like vibi
	(A)	Malaria	(B)	Typhoid
	(C)	Dengue fever		Cholara
30.	Bleac	hing of ———— occurs in marine e	nvironi	ment.
	(A)	Sponges	(B)	Star Fishes
	(C)	Whales	LON	Corals
31.	Attac	hed marine animals can be called as -		— animals.
	(A)	Migratory		Sessile
	(C)	Parasitic	(D)	Benthic
			2, 1	
32.	W 10	fishing in all the ocean is divast	ating t	he world's fisheries.
	(A)	Sustainable	0	Over
	(C)	Under fishing	(D)	Banned fishing
33.	DDT i	is a ——— used to control the vec	tors of	human parasites/pathogens.
	(A)	Fungicide	S	Pesticide
	(C)	Homicide	(D)	Bactericide
34.	Diarrl	netic shell fish poisoning is due to —		
	(A)	Harmless Algal bloom	0	Harmfull Algal bloom
2	(C)	Harmfull Viruses	(D)	Heavy Algal bloom
*				

- 35. Approximate abundance of heterotrophic bacteria found in per ml of surface seawater
 - 10⁻⁶/ml

(B) 10^{-7} /ml

(C) 10^{-2} /ml

- (D) 10^{-1} /ml
- 36. The thickness of the sea-surface microlayer is
 - (A) $250 500 \, \mu \, \text{m}$

(B) 250 - 500 mm

 $10 - 250 \ \mu \, \text{m}$

- (D) 10 250 mm
- 37. Oxidation of ammonium to nitrate (NO2) is the process called
 - (A) Ammonification

Nitrification

(C) De nitrification

- (D) Nitrate reduction
- 38. Microorganisms that live at low pH are called
 - (A) Barophiles

(B) Thermophiles

(C) Alkalophiles

- Acidophiles
- 39. The early studies of marine bacteria, started in
 - (A) 16th century

19th century

(C) 20th century

- (D) 15th century
- 40. Sleeping sickness is a disease produced by
 - (A) Fungi

(B) Bacteria

(C) Virus

Protozoa

41.	in ie	male lobsters the pleopods have		
	W	both exo and endopodite		
	(B)	only exopodite		
	(C)	only endopodite		
	(D)	both exo and endopodite absent		

42.	In cr	ab which portion of the body is hear	vily tissue	d/fleshed
	(A)	abdomen	VD)	cephalothorax
11	(C)	tail	(D)	swimming leg
43.	In ag	uatic crabs the last pair of the wall	king leg is	
	(A)	diamond shaped	D	oar shaped
	(C)	circular shaped	(D)	rectangular shaped
44.	Gast	ropods are also called as ————	—— mollu	iscs.
	LAY	Univalve	(B)	Bivalve
8.5	(C)	Cephalopod	(D)	Pearl
	0.00			em j
45.	Whic	h one is scientific name of edible oy	ster?	
-	(A)	Meretrix casta		
	(B)	Perna viridis		
	(C)	Anadara rhombea	1	
	0	Crossostrea madrasensis		

46.	Whic	h one is the world busiest trade route?			
	(A)	Pacific Ocean	(B)	Indian Ocean	
	W	Atlantic Ocean	(D)	Antarctic Ocean	
			£ 70		
47.	Whic	h two features together control the der	nsity of	sea water?	
	(A)	Salinity and plankton concentration			
	(C)	Salinity and depth	(D)	Temperature and sea depth	
			\		9
40	G C	6 11			
48.		ace currents is formed by	(D)	Cl. 1 . 1 1	
	(A)	Increased water density	(D)	Global winds	
	(C)	The moon's gravity	(D)	The sun's gravity	
49.	Ekm	an spiral is			
	W	Current	(B)	Waves	
	(C)	Tide	(D)	Low Tide	
50.		is the angle between the local	vertica	l and the educational plane	
00.	· (Are	Latitude	(B)	Longitude	
	(C)	Meridian	(D)	O-Latitude	
	(0)	Werldian	(D)	O-Latitude	
51.		vertical distance separating the crest f	rom th	e trough known as	
	WAY	Wave height	(B)	Wave length	
	(C)	Wave period	(D)	Wave cycle	
-					
52.	Sun	warms and evaporate huge amount of	water	from	
= 11	· (A)	Tropical Pacific and Indian Ocean	(B)	North Atlantic Ocean	
	(C)	North Pacific Ocean	(D)	Arctic	
	(0)	1010111100110	3-7		
	1200				
53.	The .	Antarctic circumpolar current is an im	portan	t teatures of the	
	TAY .	Ocean's deep water circulation			
	(B)	Sea surface circulation	9		

North Atlantic deep water circulation

Antarctic intermediate water circulation

(C)

(D)

54.	Euka	ryotes first appea	ared in the fossil i	record ——	—— million years ago.
	(A)	~ 1500		(B)	~ 1200
w fi	LON	~ 1800		(D)	~ 1700
55.	The r	neroplanktonic a	uricularia larva b	elongs to –	phylum.
	(A)	Coelenterata		(B)	Annelida
	(C)	Arthropoda			Echinodermata
					to the p
56.	What	t is the size range	e of femto plankto		
	(A)	$0.2-2.0~\mu\mathrm{m}$		(D)	$0.02 - 0.2 \ \mu\mathrm{m}$
	(C)	$2.0 - 2.0 \ \mu \mathrm{m}$		(D)	$20-200~\mu\mathrm{m}$
57.	Radie	olarians appeared	d during ———	— eras.	
	(A)	Mesozoic		(B)	Paleozoic
	SON	Precambrian		(D)	Cenzoic
58.	The '	'arrow-worm" sag	gitta belongs to th	.e ———	— phylum.
	(A)	Annelida		D	Chaetognatha
	(C)	Ctenophora		(D)	Arthropoda
B					
59 .	Macr	ocystis belongs to	o — algae	э.	
	W	Brown		(B)	Red
	(C)	Green		(D)	Blue green
	2.40				
60.	Whic		g fish shows biolu	minescence	in deep-sea?
	W	Angler fish		(B)	Sardine
	(C)	Gulper		(D)	Bluefin tuna

61.	The functional relationships with in and among the communities and their environment a frequently complex, but they are the mechanisms of major ecological processes such as wa cycle, soil formation, nutrient cycling and energy flow. This can be called as									
	(A)	Species richness	(B)		Species evenness					
	W	Ecosystem diversity	(D))	Similarity index					
62.	A gr	oup of organisms genetica	lly similar and the	ey c	can interbreed to produce					
	(A)	Babies	(B)		Kids					
	(C)	Nursery	9	•	Fertile Offsprings					
63.	The	coral reefs are the ———	—— of marine bi	iod	iversity.					
	(A)	Green spots	Carre Carre	•	Hot spots					
	(C)	White spots	(D)		Cool spots					
.6-										
64.	The	dimly lit zone of marine e	nvironment is calle	ed a	as					
	(A)	Benthic zone	(B)	, ,	Abiotic environment					
	W	Disphotic zone	(D)	1	Archipelago					
65.		global rate of biodiversity s between ————.	loss documented a	amo	ong the birds is more than doubled in the					
	(A)	1980 and 1990	(B)		1970 and 1980					
	(C)	1960 and 1970	W Con	•	1990 and 2000					
66.	Unite	ed Nations Conference on	Environment and	De	velopment (UNCED) is also known as					
	(A)	The Sea summit	(B)	7	The Earth submit					
	C	The Earth summit	(D)	7	The Sky summit					

	(A)	Pterobranchia	(B)	Enteropneusta
	(C)	Planctosphaeroidea	(D)	Graptlita
e 16.				
68.	What	is the main characteristic feature of	phylum	Echinodermata?
	(A)	Haemal system	*	
	(B)	Water vascular system	e ş	
	(C)	None	st = 1	
	W	Both (A) and (B)		
y e.				
69.	Naup	olius is the larvae of	36.4	7
	(A)	Insecta	0	Crustacea
	(C)	Echinodermata	(D)	Mollusca
70.	What	t is the primary characteristic feature	e for phy	ylum Annelida?
	(A)	Body covered by ciliated epidermis		
	(B)	Excretion by flam cells		
	W	Metameric segmentation		
	(D)	Trochopore larvae		
	1 6			
71.	Pear	l is produced by one of the following r	nollusca	an
	w	Oyster	(B)	Nautilus
	(C)	Chiton	(D)	Doris

67.

Balanoglossus belongs to the class

72.	Purcl	hase of feed is coming u	nder ———	— cc	sts in aquac	ulture enterpr	ise.	
	(A)	fixed		(B)	salvage			
	(C)	capital	1 1	0	variable			
1140		1.0						
							1.4	10
73.	Herm	aphrodite refers to						
	(A)	only male		(B)	male and fer	male		
	(C)	only female		(D)	sterile	marc		
	(0)	only remaie			sterne			
*								
74.		——— minimize the	disease out brea	k in c	ages.			
	(A)	Exotic fish stocking						
	(B)	Wild seeds		4		114.1		
	VO	Quarentine						9.1
	(D)	Disinfection of facilities	es					4
			* *					
75 .	-		al floating devic			ting blades ag	itate th	ne water
		ng in dissolution of atm	ospheric oxygen	in wa	ter.			380 ³²
	(A)	Generator		(B)	Do meter			
	(0)	Aerators		(D)	pH meter			4,
**								
		A 1 A 1 A 1		.* .				
7.0	CDE	1 . 1 . 1 . 6				all w		
76.		shrimp seed stands for						
	(A)	Special Protein Feed S						
	(B)	Specific Potential Fry	*		2			
	10	Specific Pathogen Free						
	(D)	Specially Produced Fr	y Shrimp Seed					

15

	(A)	Distribution of pH	(B)	Distribution of salinity
	(C)	Distribution of dissolved oxygen	0	Distribution of nutrients
7 8.		cal and horizontal distribution of d play of	issolve	d oxygen in the ocean results from the
	(A)	biological processes	(B)	physical processes
	W	physical and biochemical processes	(D)	none of the above
192				
79.	Radio	active decay leads to the introduction		——— in to the sea.
	(A)	hydrogen and oxygen	(B)	nitrogen and CO ₂
	VOY	helium, radon and argon	(D)	none of the above
80.	The s	solubility of gases in sea water increase	es with	
	1 Car	decrease of temperature and salinity		
	(B)	increase of temperature and decrease		
e 1	(C)	increase of temperature, pressure an		
-	100			
	(D)	increase of temperature and salinity	and de	ecrease of pressure
81.		fish have long been known to concent	rate	
	(A)	heavy metals	(D)	trace metals
	(C)	transition metals	(D)	light metals
82.	The r	relative amounts of dissolved constitue	nts wi	thin the oceans are controlled by
	(A)	physical processes	(B)	biological processes
	C	biogeochemical processes	(D)	chemical processes
1 1			8 1	

The vertical distribution of total dissolved carbon in ocean is similar to

77.

83.		native species where the e ecosystem is called	ey lack predator (or)	other natural control,	they can affect the
	(A)	Endemic	(B)	Indigenous species	
* 141	100	Invasive species	(D)	Local species	
84.	The c	organism attach themse	lves to the ship hull is	s called as	
	(A)	Bio compound	(B)	Biodegradation	
	(C)	Antifouling	WY.	Biofouling	
				1	
85.	Eutro	ophication in coastal an	d sea water happen d	ue to	
	(A)	Over fishing	(B)	Lack of nutrients	
	W	Influx of nutrients	(D)	Under fishing	
	5				
86.	Biode	egradable pollutants is			
	(A)	Waste oil	and the same	Cooking waste	
	(C)	Radiation waste	(D)	Plastic waste	
					A CONTRACTOR OF THE CONTRACTOR
87.	Mari	ne filter feeders are			. 194
	(A)	Shark	W.	Clam	
	(C)	Sea bars	(D)	Dolphin	
					4
(440.25)					
88.	-			oratidal/spray zone of r	ocky shore.
	(A)	Shrimp		Acorn barnacles	
	(C)	Fin fish	(D)	Small sharks	

89.	Fluor	rescent antibody technique					
	(A)	The bacterial cell visible under the	fluoresc	ence microscope			
	(B)	The internal part of the bacterial	zisible un	nder the microscope			
	(C)	The bacterial antigen visible under	r the fluc	prescence microscope			
	W.	The bacterial cells that have comb fluorescence microscope	ined wit	h the labeled antibody will be visible under			
90.	Bacte	teriophages are					
	(A)	Bacteria	LA	Viruses			
	(C)	Protozons	(D)	Fungus			
	· v						
31							
91.	Pseud	idopodia are used for					
	W	Capturing of food substances					
	(B)	Used for the protection					
	(C)	Used for the reproduction					
	(D)	Used for digestion	- 30				
92.	The r	name protozoa was given by					
	LAN	Gold Fuss (1817)	(B)	Gold Berg (1867)			
	(C)	Leeuwenhoek (1681)	(D)	Dobell (1950)			
	H.						
93.		polymerase is an enzyme used for eria living in	DNA p	olymerase chain reaction is isolated from			
	W	Higher temperature region of the	ocean				
	(B)	Lower temperature region of the ocean					
	(C)	Medium temperature region of the	ocean				
	(D)	Acidic environmental region					
FAN	IBY		18	•			

94.		gen and phosphorous from mar	riculture	e facilitis leads	to —	of
	(A)	Mass morlably of microbes				
	(B)	Fish-kills				
	(C)	Die-offs			97. 4.	8
	VO)	Bloom			2	
le de						
95.	Cent	ral Institute of Fisheries Education (C	CIFE) is	located in		
	(A)	Cochin	D	Mumbai		
	(C)	Chennai	(D)	Bhubaneswar		
N. P.						
96.	Cultu	are of more than one fish species is ca	lled			
	(A)	Mono-sex culture	(B)	All male culture		
	(C)	Mono-culture	LOY	Poly-culture		
	9		× .			
					4	
97.	Eury	haline fishes tollerates wide variation	ı in	Y		
	(A)	pH	(B)	Temperature		
	(C)	Alkalinity	DY	Salinity		
	*			e llas		
	,					
98.	Cent	ral Institute of Brackish Water Aquad	culture	(CIBA) is located in	n	
	(A)	Bhubaneswar	Var	Chennai		
	(C)	Cochin	(D)	Mumbai		

99.	The b	oundary zone between surface and de	ep wate	er is
	(A)	Thermocline	(D)	Pycnocline
	(C)	Thermohaline	(D)	Halocline
100.	The f	lattest area found in the ocean named	as	
	(A)	Abyssal hill	(B)	Sea mount
	(C)	Deep sea	WY.	Abyssal plain
101.	The p	periodic rise and fall of the sea level is	* 100	
	VAY	Astronomical tide	(B)	Ocean tide
	(C)	Solar tide	(D)	Neap tide
4. 7				
102.	Shore	e is divided into the ———— and t	he ——	
	(A)	Near shore and Off shore		Back shore and Fore shore
. 1	(C)	Shore line and Coastal line	(D)	Coast and Shore
			907941	
103.	Worl	dwide sea-air fluxes for the gas CH ₄ is		
	W	3.2×10^{12} g/year	(B)	$1.5 \times 10^{14} \mathrm{g/year}$
	(C)	1.4×10^{12} g/year	(D)	2.7×10^{11} g/year
104.				a and animals like radiolarians, pteropods
			rified s	tructure. Among them which one is most
	0.020	rtant organisms in the sea	(D)	The state of the s
	(A)	Radiolorians	(B)	Pteropods
	(C)	Sponges	مرس	Diatoms
		No. 2		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

105.	1 caro	orie (cai) is ——— joi	iles (J)		* *	
	W	4.184		(B)	32.420	
381	(C)	0.841		(D)	10.932	
106.	What	is the light intensity (M	W cm ⁻²) in eup	hotic	zone?	
	VAS	10 ⁵		(B)	10^{-3}	\$ 1 L
	(C)	10 ⁻⁷		(D)	10 ¹	A sec
107.	Whic	h of the following is not r	equired for mi	croalg	al culture?	
	(A)	Nitrogen		(B)	Copper	
	VER	Mercury		(D)	Zinc	

108.	Whic	h chemical is used for Na	arcotisation of	zoopla	inkton?	
	(A)	Eosin		BY	Ethanol	
	(C)	Sodium citrate		(D)	Zinc sulphate	
					* * * * * * * * * * * * * * * * * * * *	
109.	Sea s	nakes are				
	W	Extremely poisonous		(B)	Mammals	
	(C)	Non-poisonous		(D)	Does not have fangs	
				*		
110.		ne animals, that burro	ws and living	g buri	ed in the sediment is ca	lled ———
	(A)	Aerobic		(B)	Anarobic	
	(C)	Epifaunal			Infaunal	*
	- N - S					

111.	What	is meant by GMBT, which involves in biodiversity conservation?
	(A)	Gulf of Mannar Birds Trust
	(D)	Gulf of Mannar Biosphere Trust
	(C)	Gulf of Mannar Biota Trust
	(D)	Gulf of Mannar Bivalves Trust
112.		wing threat to global mangrove ecosystem is the climate change, which is pertaining to hanges in temperature, carbon dioxide, precipitation, hurricanes, storms and
	W	Sea level (B) Estuary level
	(C)	Lake level (D) Pond level
113.	The e	expansion of IHDP is
	W	International Human Dimensions Programme on Global Environmental Change
	(B)	International Human Development Programme on Global Environmental Climate
	(C)	International Human Development Programme on Glorious Environmental Climate
	(D)	International Human Development Programme on Global Environmental Change
114.	Micro	porganism inhabitants of the bottom of the oceanic region are referred to as
	(A)	Pelagic organism
	(B)	Coastal water organism
	400	Benthic Microorganism
	(D)	Pelagic Microorganism
	* 1	
115.	The N	Microorganism they do not have any role in the biogeochemical cycle are
	(A)	Algae (B) Bacteria
1	W	Virus (D) Yeast

(A) Sail fish (C) Marlin fish (D) Striped marlin 117. Coastal regulation zone notification was issued during ————————————————————————————————————
117. Coastal regulation zone notification was issued during ————————————————————————————————————
(A) 2000 (B) 2005 1991 (D) 2015 118. The adult flat fishes have eyes either on (A) Right side (B) Left side (C) Right or left side (D) Ventral side 119. Saurida tumbil is commonly called as fish (A) Snake fish (B) Eel fish (C) Milk fish (D) Lizzard fish
(A) 2000 (B) 2005 1991 (D) 2015 118. The adult flat fishes have eyes either on (A) Right side (B) Left side (C) Right or left side (D) Ventral side 119. Saurida tumbil is commonly called as fish (A) Snake fish (B) Eel fish (C) Milk fish (D) Lizzard fish
(A) 2000 (B) 2005 1991 (D) 2015 118. The adult flat fishes have eyes either on (A) Right side (B) Left side (C) Right or left side (D) Ventral side 119. Saurida tumbil is commonly called as fish (A) Snake fish (B) Eel fish (C) Milk fish (D) Lizzard fish
118. The adult flat fishes have eyes either on (A) Right side (B) Left side (C) Right or left side (D) Ventral side 119. Saurida tumbil is commonly called as fish. (A) Snake fish (B) Eel fish (C) Milk fish 120. Which species of prawn is called as Indian white prawn?
118. The adult flat fishes have eyes either on (A) Right side (B) Left side (C) Right or left side (D) Ventral side 119. Saurida tumbil is commonly called as — fish. (A) Snake fish (B) Eel fish (C) Milk fish (D) Lizzard fish 120. Which species of prawn is called as Indian white prawn?
(A) Right side (B) Left side (C) Right or left side (D) Ventral side 119. Saurida tumbil is commonly called as ———————————————————————————————————
(A) Right side (B) Left side (C) Right or left side (D) Ventral side 119. Saurida tumbil is commonly called as ———————————————————————————————————
(A) Right side (B) Left side (C) Right or left side (D) Ventral side 119. Saurida tumbil is commonly called as ———————————————————————————————————
Right or left side (D) Ventral side 119. Saurida tumbil is commonly called as — fish. (A) Snake fish (B) Eel fish (C) Milk fish Lizzard fish 120. Which species of prawn is called as Indian white prawn?
119. Saurida tumbil is commonly called as — fish. (A) Snake fish (B) Eel fish (C) Milk fish D Lizzard fish 120. Which species of prawn is called as Indian white prawn?
(A) Snake fish (C) Milk fish (B) Eel fish (C) Lizzard fish 120. Which species of prawn is called as Indian white prawn?
(A) Snake fish (C) Milk fish (B) Eel fish (C) Lizzard fish 120. Which species of prawn is called as Indian white prawn?
(A) Snake fish (C) Milk fish (B) Eel fish (C) Lizzard fish 120. Which species of prawn is called as Indian white prawn?
(C) Milk fish Lizzard fish 120. Which species of prawn is called as Indian white prawn?
120. Which species of prawn is called as Indian white prawn?
(A) P. monodon P. indicus
(C) P. semisulcatus (D) P. merguiensis
121. Find out the scientific name of non penaeid prawn
(A) Penaeus monodon
(B) Penaeus indicus
Macrobrachium rosenbergii
(D) Penaeus japonicus

Fish Xiphius gladius is commonly called as

(A) 100 (C) 12.7 (D) 46.6 123. OSCR abbreviated (A) Ocean Surface Circulatory Radar (C) Observatory Surface Current Radar (D) Ocean Simulatory Current I	
123. OSCR abbreviated (A) Ocean Surface Circulatory Radar Ocean Surface Current Rad	
(A) Ocean Surface Circulatory Radar Ocean Surface Current Rad	
(A) Ocean Surface Circulatory Radar Ocean Surface Current Rad	
(A) Ocean Surface Circulatory Radar Ocean Surface Current Rad	
(C) Observatory Surface Current Radar (D) Ocean Simulatory Current 1	ar
	Radar .
124. CZCS means	
Coastal Zone Color Scanner (B) Current Zone Color Scanner	
(C) Circulation Zone Color Scanner (D) Coastal Zone Complex Scan	ner
125. Upwelling occurs only when wind persistently blows in one direction over the	
(A) Open Ocean (B) High Seas	
(C) Marginal Seas Coastal Ocean	
126. The flow of air around a region of low pressure counter clock wise in hemisphere	the Northern
(A) Hurricanes (B) Typhoons	
(C) Cyclonic flow	
	4.
127. The undulations are developed in the polar jet stream are known as	
Ross by Waves (B) Transverse Waves	
(C) Longitudinal Waves (D) Surging Waves	
128. Difflection by the coriolis force is some times said to be	6.
(A) Surface current Cum sole	
(C) Ekman current (D) Coriolis motion	

120.	I II C	costing egg Epinppia is produced by		
	(A)	Artemia	(B)	Copepod
	W	Daphnia	(D)	Rotifer
130.		ction of — to produce high action.	energy	organic substances is called autotrophic
	(A)	Oxygen	(B)	Nitrogen
	W	Carbondioxide	(D)	Carbon monoxide
131.	Whic	h is called as sand dollar?		
	W	Mellita	(B)	Donax
	(C)	Ensis	(D)	Murex
132.	Whic	h is wrongly matched?		
	(A)	Nan oplankt on-Flagellates		
	(B)	${\bf Micro\ zooplankton-Protozoa}$		
	(C)	Macro zooplankton – Copepods		
	D	Mega zooplankton – Mysis		
133.	The r	naked pteropods is otherwise known as	3	
	(A)	Thecosomes	(P)	Gymnosomes
**	(C)	Cyclopoid copepod	(D)	Calanoid copepod
134.	The h	noloplanktonic zooplankton noctiluca b	elongs	to
	(A)	Ciliate	1	Dinoflagellate
	(C)	Copepod	(D)	Salp
		gio.		

nr	— is the complete disappearance of all individuals of a species without producing.	ıg
- (A	Extinction (B) Extension	
(C	Intension (D) Instinction	
(0	intension (D) instruction	
C	umptive value, productive value, non-consumptive value, option value and existen	00
	s are all coming under the	CE
(A	Values of market	
0	Values of biological resources	
(C	Values of production	
(D	Values of total	
If	pecies has ————, it can be made into a product that can be sold in the market.	
(A	Normal value (B) Maximum value	
4	Commodity value (D) Minimum value	
2		
E	nsion of CMS is	
W	Convention on the conservation of migratory species of wild animals	
(B	Convention on the conversation of migratory species of domestic animals	
(C	Convention on the confusion of migratory species of wild animals	
(E	Convention on the confusion of migratory species of domestic animals	
Tl	nighest biological diversity of animals is related to	
W	Mega diversity countries	
(B	Micro diversity countries	
(C	Milli micro diversity countries	
(E	Sub-tropical countries	

	(A)	Amphiprous	DY	Pterous
	(C)	Syngnathus	(D)	Xiphophorus
	-			
141.	Which	n one of the following is the "Smallest	shark"	?
10	W	Squaliolus	(B)	Mistichthys
.4.	(C)	Pandaka	(D)	Carcharodon
tion in	*			
142.	The M	Tackerel belongs to the genus		
	(A)	Caranx	(B)	Scomberomorus
	S	Rastrelliger	(D)	Kowata
143.	Shale	s and rays are		
	LAY	Classic Benthic fishes	(B)	Classic Hadal fishes
	(C)	Classic pelagic fishes	(D)	None of these
	3 - 5			
144.	Mura	l or snake head is the common name f	or	
	(A)	Mugil cephalus	VO	Channa Striatus
	(C)	Chanos Chanos	(D)	Mystus Gulio
Į.				
	* *		1	
145.	Whiel	n is the fossil lamprey?	· .	
	(A)	Caspiomyzon	(B)	Ichthyomyzon
	W	Myomyzon	(D)	Eudontomyzon

140. Scorpion fishes belongs to the genus

147.	Scien	ntific name of blood clam is
	W	Anadara granosa
	(B)	Paphia gallus
	(C)	<u>Tresus</u> <u>nuttallii</u>
	(D)	Solen spp.
148	Recre	eational fishing means
	(A)	Catch and kill fish
	BY	Catch and release fish
	(C)	Catch and cook fish
	(D)	Catch and sale fish
•		
149	. OIE	refers to
	VAY	Fish disease related organization
	(B)	Marine mammal related agency
	(C)	Fishermen welfare organization
	(D)	Import export regulating body
FAI	MBY	28 ↔

The first marine finfish to be successfully cultured was

146.

(A)

(B)

(C)

milk fish

sea bass

sparus aurata

seriola quinqueradiata

	Toxic rise t	substances secreted	d by many d	inoflagellate	es such as Gymnod	ium breve.	Which give
	A(A)	red tide blooms		(B)	plankton blooms		
	(C)	algal blooms		(D)	none of them		
	(0)	argar oronno		(2)			
							7
151.	In he	terotrophy, the organ	nism depends	3			
	(A)	Partialy on dissolve	ed and partic	ulate organ	ic matter		1 ty.
	(B)	Entirely on dissolve	ed and partic	ulate organ	ic matter		
	(C)	Partialy on particu					
	(D)	None of them	141 9				
						75 - 11	
152.		ne animals make a nic material through				the budget	of dissolved
	W	faccal pellets		(B)	particulate matter		
	1						
	(C)	dead animals		(D)	none of them		
	(C)	dead animals	V	(D)	none of them		
	(C)	dead animals		(D)	none of them		
153.	Deca	y of the dead organi		echanism o	f autolysis, the deco	omposition	reaction are
153.	Deca brou	y of the dead organi ght about by————		echanism o in the dead	f autolysis, the deco	omposition	reaction are
153.	Deca	y of the dead organi ght about by ———— DNA		echanism o in the dead (B)	f autolysis, the deco cell. RNA	omposition	reaction are
153.	Deca brou	y of the dead organi ght about by————		echanism o in the dead	f autolysis, the deco	omposition	reaction are
153.	Deca brou	y of the dead organi ght about by ———— DNA		echanism o in the dead (B)	f autolysis, the deco cell. RNA	omposition	reaction are
153. 154.	Deca broug (A)	y of the dead organi ght about by ———— DNA	—— present	echanism o in the dead (B) (D)	f autolysis, the deco cell. RNA Lipids		
	Deca broug (A)	y of the dead organi ght about by ———— DNA Enzymes	—— present	echanism o in the dead (B) (D)	f autolysis, the deco cell. RNA Lipids		
	Deca broug (A)	y of the dead organight about by DNA Enzymes total soluble organic-	—— present	echanism o in the dead (B) (D)	f autolysis, the deco cell. RNA Lipids		

155. The organic matter in the sea having a diameter less then $0.5\,\mu m$ is called

- (A) particulate organic matter
- (B) dissolved organic nitrogen

diss

dissolved organic matter

(D) particulate organic silicate

156.	Large	e organisms that inhabit sediment	covered sh	ores are called
	(A)	Inflora	(B)	Epiflora
	ver	In fauna	(D)	Out fauna
157.	Bacte	eria play a major role in the ———	— of org	anic materials.
	(A)	Assimilation	VD)	Decomposition
	(C)	Deposition	(D)	Accumulation
			, =	
158.	Anim	al plankton in the sea is called		
	(A)	Phytoplankton	LON	Zooplankton
	(C)	Neckton	(D)	Benthos
159.	The r	narine environment sub-divided in	to two, one	e is benthic and the other is
	(A)	Deep sea	(B)	Surface
*	(C)	Hydrothermal vents		Pelagic
160.	Dissi	milar organism living together in c	lose associ	iation is called
	(A)	Parasitic	100	Symbiosis
	(C)	Fouling	(D)	Bleaching
			*	
161.	Portu	iguese man-of-war is a		
	(A)	Fish	Var	Jelly fish
	(C)	Dolphin	(D)	Crab
		8 6 6		

	(A)	Sexual reproduction (B)		Fruiting bodies
ik.	C	Somatic (D)	E -	Asomatic
163.	Esche	erichia coli is a		
	4	Harmful bacteria		
	(B)	Benifical bacteria		
-	(C)	Both harmful and benifical bacteria		
10	(D)	Benifical only for animals		
164.	Stock	c-culture collection referred to		
	(A)	Maintenance of Gram-Positive bacteria		
	(B)	Maintenance of Gram-Negative bacteria		
	10	Maintenance and preservation of pure cul	tu	ure
	(D)	Maintenance of contaminated culture		
	en. er å			
165.	Psych	prophilic microorganisms can grow at		
	WAY	Very lower temperature		
	(B)	Very high temperature		
	(C)	Normal temperature		
	(D)	Both normal and high temperature		
166.	Bacte	eria can sensed the chemicals by means of		
	CAS -	Chemoreceptors (B)		Chelating agent
	(C)	Chemotherapeutic agent (D)	-	Cytotoxin

The vegetative reproduction of fungi is also called as

162.

	(A)	Seabass	(B)	Jew fish
	(C)	Milk fish	(D)	Seer fish
168.	In 20	16 which fishery is highest in contributi	on to	the total marine landings in India?
J. 18	W	Pelagic	(B)	Demersal
	(C)	Crustaceans	(D)	Molluscs
H 9 B			, E	
169.	The t	total marine fishery landings in 2016 in	Tami	ilnadu state was
	(A)	10 lakh tonnes	(B)	5 lakh tonnes
	VOY	7.07 lakh tonnes	(D)	9 lakh tonnes
	a **			
170.	What	t is the scientific name for thread fin bre	eam f	ishes?
	WAY	Nemipterus vandalli		
	(B)	Stolephorus commersonii		
	(C)	<u>Lutjanus</u> <u>lutjanus</u>		
	(D)	Chanos chanos		
			. 4	
171.	Whic	ch gastropod is fished for its opercular tr	rade i	n market?
	(A)	Olivia gibbosa		
	(B)	Umbonium vestiarium		
	w	Turbinella pyrum		
	(D)	Trochus Niloticus		
	, ,			

32

Fish family sciaenidae is known as

167.

FAMBY

112.	THE C	ocean contain ——— of dissolved,	partic	cutate and fiving forms of carbon.
	(A)	31,000 Gtc	D	40,000 Gtc
	(C)	28,300 Gtc	(D)	10,000 Gtc
		200		
173.	A cur	rrent that spiral around an axis paralle	l to th	ne wind direction
	(A)	Counter current	(B)	Ekman current
1	JOY	Langmuir circulation	(D)	Deep water current
174.		are wind-driven cyclonic or ar	nti cyc	donic currents with the dimensions nearly
	that	of ocean basins.		
	(A)	Antarctic circum polar current	(B)	Counter current
	Co	Gyres	(D)	Equatorial current
175.	Both	the temperature and salinity must be	consta	ant in
	(A)	Lower layers	W)	The mixed layers
	(C)	Higher layers	(D)	Coastal water layers
1	× =			
176.	Temp	perature, salinity and pressure are use	d to ca	lculate
	(A)	Climate	(B)	pН
	(0)			
		Density	(D)	Biodiversity
100	A 1	(1)		
177.	A deg	gree of latitude is not the same length a	as deg	ree of longitude except at the
	CAY	Equator	(B)	North pole
	(C)	South pole	(D)	Mid latitude

178.	Whic	h of the following i	s responsible for oce	an acid	lification?
	LAN	CO_2		(B)	CO
	(C)	He		(D)	Ar
				3	
179.	Cocco	olithophores are for	rmed during ———	— pe	riod.
	(A)	Triassic		(B)	Neogene
	W	Jurassic		(D)	Cambrian
	4.				
	35.				
180.	Who	coined the word co	occolith?		
	W	Huxley		(B)	Milliman
	(C)	Harper		(D)	Bown
181.	The	process of autoinhi	bition is exhibited in		
	(A)	Dunaliella Sp.		(B)	Tetraselmis Sp.
	40	Chlorella Sp.		(D)	Chaetoceros Sp.
					4
182.	Whic	h is called as "sea	gooseberry"?		
	Y	Pleurobractia		(B)	Sagitta
	(C)	Tomopteris		(D)	Beroe
				A	
183.	Wha	t is the percentage	of silica is present in	n the s	keleton of a diatom?
	(A)	40–50%			4–50%
	(C)	10–20%		(D).	20-40%
					*
184.	How	many species are	there in the order ca	lanoida	a?
	(A)	1800		(B)	1875
	(C)	1740		10	1850

	2.	Karaiyachalli Island		
34	3.	Koswari Island		
	4.	Van Island		
	W	1 - 2 - 3 - 4	(B)	2 - 1 - 3 - 4
	(C)	4 - 3 - 2 - 1	(D)	3 - 4 - 2 - 1
	1			
186.	A par	rt from sea birds, the oyster reefs	are one of t	he most affected
	(A)	Estuarine habitats on earth	(B)	Riverine habitats on earth
	(C)	Terrestrial habitats on earth	W	Marine habitats on earth
			1	
187.	forme	ed by the International council fo	r science (IC	
	(A)	1947	(B)	1967
	The same of the sa	1957	(D)	1977
	×			
188.	Omn	ivore, an animal that feeds on		
	VA	Both plants and animals	(B)	Plants alone
	(C)	Animals alone	(D)	Detritus material
189.		is normally considered a	at the specie	s level, species diversity of an area. It is a
	meas	ture of both the number of species		
	(A)	Combination	(B)	Associated organisms
	(C)	Diversity	1	Biodiversity
			16 6	
30.27				

Arrange these islands of Gulf of Mannar from North to South

Velanguchalli Island

185.

1.

190.	The I	Brackish Water Fish <u>Chanos</u> <u>Chanos</u> is i	in En	glish Commonly Called As
	(A)	Grey Mullet	(B)	Milk Fish
	(C)	Sea Bass	(D)	Pearl spot
	mı	in in the line of the lates		C
191.		commercially important cobia fish belon		family.
	(A)	Halpodontidae	(B)	Clupeidae
	Way-	Rachycentridae	(D)	Exocoetidae
		N 10		
192.	Whic	ch of the following is incorrectly paired?		
	(A)	P. monodon - Giant tiger shrimp		
	(B)	P. indicus – Indian white shrimp		
	(C)	P. semisulcatus – Green tiger shrimp		
	107	P. penicillatus – Banana shrimp		
3 1		<u>r. pomomavao</u>		
				13 N N
193.	Whic	ch species of gastropod is called as staire	case s	shells?
	WAY	Architectonia perspectiva		
	(B)	Murex bacillus	2	
	(C)	Oliva gibbosa		
	(D)	Conus glans		
				0.
				* * *
194.		disease carrier which does not exhibitin	g sig	
	(A)	symptomatic	CO)	asymptomatic
	(C)	desymptomatic	(D)	symphathetic

36

FAMBY

	VA	Teredo	(B)	Pecten
	(C)	Solen	(D)	Sepia
96.	Drool	nianus muhana halanga ta t	he shulum	
<i>3</i> 0.		nionus rubens belongs to t	ne phylum	Lotifera
	(A)	Entoprocta	(D)	
	(C)	Acanthocephala	(D)	Ectoprocta
97.	Whic	h one is commonly known	as mushroom cora	1?
	(A)	Aurelia	(B)	Madrepora
	(C)	Gorgonia		Fungia
	7)			
OO	Whon		· A1:9	
98.	When	re the gonads are develops		
.98.	W	Endothermal	(B)	Mesothermal
.98.	When (C)			Mesothermal None of these
98.	W	Endothermal	(B)	
98.	W	Endothermal	(B)	
	(C)	Endothermal	(B) (D)	None of these
.98.	(C)	Endothermal Ectothermal	(B) (D)	None of these
	(C)	Endothermal Ectothermal ethe cell which maintain	(B) (D) the water current i	None of these n sponge?
	(C)	Endothermal Ectothermal e the cell which maintain Choanocytes	(B) (D) the water current in (B)	None of these n sponge? Myocyte
	(C)	Endothermal Ectothermal e the cell which maintain Choanocytes	(B) (D) the water current in (B)	None of these n sponge? Myocyte
99.	(C) Name (C)	Endothermal Ectothermal e the cell which maintain Choanocytes Chromocyte	(B) (D) the water current in (B) (D)	None of these n sponge? Myocyte
	(C) Name (C)	Endothermal Ectothermal e the cell which maintain Choanocytes	(B) (D) the water current in (B) (D)	None of these n sponge? Myocyte