		1			
Register			1 -		
Number					

2019 GEOLOGY (PG Degree Std.)

Time Allowed: 3 Hours]

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer, the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed, it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination, it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.
- 6. You will also encode your Question Booklet Number with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per Commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

 $A \bullet C D$

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. Do not make any marking in the question booklet except in the sheet before the last page of the question booklet, which can be used for rough work. This should be strictly adhered.
- 11. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

Hamonna.

1.	The	welded tuffs are known as		★ 기념 보고 시 하고 있는 기업장 경기
	(A)	Agglomerates	0	Ignimbrite
	(C)	Nunatak	(D)	Inselberg
2.	Volca	anic domes are also known as		
	(A)	Hornotos	(B)	Cinder cones
	100	Lava cones/domes	(D)	Trenches
			2.0	
3.	A vo	lcano which has stopped eruption ove	r a long	period is known as
	(A)	Active volcano	(B)	Dormant volcano
	(C)	Extinct volcano	(D)	Dead volcano
			Ya K	
4.		lithospheric plates slide past one a	nother	and that the plates neither gain nor lose
		Constructive plate margin	(B)	Destructive plate margin
	(A)	Conservative plate margin	(D)	All the correct
		Conservative plate margin	(D)	Till the correct
5.		Slab Pull theory is related to:	(B)	Continental drift
	(A)	Isostasy Plate Zectonics	(D)	Expanding the earth
		Plate Zectonics	(D)	Expanding the earth
				0.00 - 11
6.	Rock	as formed at the ridge crests which are	re young	er than 0.69 million years are:
٠,		Normally magnetized		
- 1: -	(B)	Reversely magnetized		
	(C)	Either normal or reversily magnet		la antique in a superior in the second
	(D)	The information is insufficient to p	redict t	he nature of magnetization involved.

	(A)	5,871 km	(B)	6,713 km
	(C)	7,613 km	W)	6,371 km
8.	The	Age of the Earth is	1	
	(A)	4.2×10^9 years	0	$4.6 \times 10^9 \mathrm{years}$
	(C)	4.8×10^9 years	(D)	$4.7 \times 10^9 \mathrm{years}$
*				
9.	Low	er Gondwana rocks were deposited und	ler	
	VI)	Warm and humid climate	(B)	Arid climate only
	(C)	Warm climate only	(D)	Humid climate only
	31			
10.	indu		st imp	most important raw material for cement ortant raw material for cement industry is n of the following Indian States
	(A)	Bihar		
	(B)	Uttarpradesh		
	(C)	Madhyapradesh (MP) & Guntur (AP)	
	9	All of the above		
11.		ch of the following statements are correr Vindhyan?	ect reg	arding the lithology of porcellanite stage of
	I.	Sandstone		
	II.	Shales		
	III.	Tuffs		
		ch of the following lithology of porcering?	ellanit	e stage of Lower Vindhyan is commonly
	(A)	Sandstone	(B)	Shales
	(C)	Tuffs	9	Sandstone, Shales and Tuffs

The average radius of the Earth is:

12.	The T	Trichinopoly stage is subdivided into —		sub stages.
Ţ.	(A)	3	0	2
	(C)	no	(D)	4
13.	Unco	iled ammonites are characteristic of		
	W.	Uttatur stage	(B)	Ariyalur stage
	(C)	Niniyur stage	(D)	Trichinopoly stage
14.	Whic	ch of the following statements are corre	ct reg	arding the origin of Deccan traps?
	I.	They were erupted in a subaerial env		
	II.	Eruptions of the lava took place along		
	III.	A large number of dykes that have be		
	IV.	The lava when erupted was in a high	ly liqu	uid form
	(A)	I is correct		
	(B)	II is correct		
	(C)	II, III and IV are correct		
	0	I, II, III and IV are correct	٠,	
15.	A bo	oring at Dhandhuka in Ahmedabad ———— meter of Deccan trap.	Distr	ict in Gujarat Penetrated a thickness of
	(A)	311	(d)	464
	(C)	215	(D)	1,070
16.	The	Deccan traps were issued through long	narr	ow fissures in the Earth's crust are called
	(A)	Volcanic Eruption	(B)	Volcanic craters
	401	Fissure type Eruption	(D)	Central type Eruption
				CUGE/19

17.	The group		vas very well e	evidenced in which of the following s	upei
	(A)	Dharwar super group	(B)	Cuddapah super group	
	()	Gondwana super group	(D)	Vindhyan super group	
	300 3				
	1.				, ,
18.		is the line connecting t	the points of ze	ro inclination of the Earth's surface.	
	(A)	Magnetic declination	(B)	Magnetic meridian	
	Coy	Magnetic equator	(D)	Both (B) and (C)	31 112 2
19.	The (Glossopteris flora is predomina	ant in which of	the following sub-groups?	.,
	W	Lower Gondwana	(B)	Middle Gondwana	
	(C)	Upper Gondwana	(D)	Upper Vindhyan	
20.	Dam	uda series belong to which of t	he following su	b-groups?	
	(A)	Upper Gondwana	(B)	Middle Gondwana	
	9	Lower Gondwana	(D)	Upper Cretaceous	
	8 c				
21.	Whic	ch among the following is a Nor	rmal contact/Fa	acies change rather than an unconform	rity?
	(A)	Semri/Kaimur		Kaimur/Rewa	
	(C)	Rewa/Bhander	(D)	Semri/Bijawar	
22.	Tadp	atri formation comprises whic	h of the followi	ng rock types?	ah Nu
· · · · ·	(A)	Limestones	· 100	Shales	
	(C)	Quartzites	(D)	Marbles) Š

23.	The r	The reproductive cones of Lepidodendron are called							
	(A)	Sigillariastrobus	VB	Lepidostrobus					
	(C)	Bothrodendrostrobus	(D)	Lepidocarpastrobus					
24.	Gloss	sopteris is the name of							
	(A)	Phylum	(B)	Class					
	(C)	Order	9	Genus					
25.	The f	loral species "Williamsonia" is a							
	(A)	Cycads	(B)	Conifer					
	(C)	Ferm	(D)	Bryophyte					
	1.1								
26.	The v	vascular plants possess a highly orga	nised fo	od and water conducting structure called					
j-	(A)	spores	(8)	stele					
	(C)	leaf	(D)	stem					
A LES									
27.	Whic	th among the following is non-vascula	r plants	s?					
	W	Cyanophyta or Blue-green algae	(B)	Psilopsida					
	(C)	Lycopsida	(D)	Pteropsida					

28.	The	geological range of Ptilograptus is							
	(A)	Carboniferous	(B)	Devonian					
	(C)	Silurian		Ordorician					
29.	In gr	raptolites smallest of thecae is called							
	(A)	Autotheca	(B)	Bitheca					
	(C)	Stolon	(D)	Stolotheca					

30.	t to from an angle known as			
	(A)	Glabellar angle	0	Genal angle
	(C)	Spire angle	(D)	Angle of divergence
S0				
31.	Trilol	bites, the segment on its left sides are	terme	d as
	(A)	Axis	(B)	Axis lobe
	9	Pleural lobes	(D).	Caphalon
32.	Phyll	oceral is		
	(A)	Upper Triassic	V	Lower Jurassic
	(C)	Middle Triassic	(D)	Lower Triassic
33.	Spiro	ceras is		
	(A)	Devonian ammonoids	(6)	Jurassic ammonoids
	(C)	Carborriferous ammonoids	(D)	Upper Triassic ammonoids
			10	
19				
34.	Amm	onoid suture line first appeared is		
	W	Permian	(B)	Triassic
	(C)	Jurassic	(D)	Cretaceous
35.	Para	llel beds without folding , faulting and	tilling	of strata are called
	(A)	Non conformity	(B)-	Angular unconformity
	VO	Dis conformity	(D)	Break up unconformity

- 36. Match the following and choose the correct answer.
 - (a) Gravity fault
- 1. Caused by rotational stresses
- (b) Compressional fault
- 2. Caused by the lateral thrust
- (c) Transurrent fault
- 3. Caused by compressional forces
- (d) Pivotal fault
- 4. Formed by tensional forces

(a)

4

2

- (b)
- (d) 3

1

4

1

- (A) 2
- 1 .
- 4

(c)

- 3
- 2
- (C) 1

(D)

- 2
- 3
- 4
- 37. The total displacement measured along the fault plane is
 - (A) Heave

Net slip

(C) Throw

- (D) Hade
- 38. The out crops of inclined beds in the up throw side appear to have advanced in the direction of dip is called
 - -
 - Dip fault

(B) Strike fault

(C) Folded bed

- (D) Horizontal bed
- 39. The diagram given below represents

- (A) Fault plane
- Fault plane with down throw
- (C) Direction and amount of dip
- (D) Vertical bed

40.	Subs	sidiary folds attached to the recumber	t lolus a	are know as ———.
	(A)	Nappes	(B)	Arch bends
	(C)	Shell	S	Digitation
41.	Glid	ing involves upper part of the basemen	nt as w	ell as the overlying sediments are called
	(A)	Free gliding	(B)	Hillside creep
4	(C)	Bathydermal glide	0	Dermal glide
2				
42.	The	contraction theory expresses		
	1.	Cooling of the earth		
	2.	Extrusion of magma		
	3.	Formation of denser mineral within	the ear	th
	4.	Collapse structures		
	(A)	1 only	(B)	1 and 3 only
æ"T	(0)	1, 2 and 3 only	(D)	3 and 4 only
43.	-	is the property of rocks to ru	pture a	and lead to crack propagation without an
	plas	etic deformation		
	(A)	Rigidity	(B)	Ductility
	(C)	Plasticity	0	Brittleness
44.	Fail	ure of a rock body under repeated load	ling	
	W	Fatigue	(B)	Rigidity
	(C)	Ductility	(D)	Brittleness

45 .	The a	axial ratio a : b : $c = 0.49 : 1 : 0.48$ is applicab	le to which of the given mineral species?
	(A)	Barite (B)	Gypsum
	4	Aximite (D)	Orthoclase
	1.		
46.	The	axial ratio a : b: $c = 0.815 : 1:1.314$ is applical	ole to which of the given mineral species?
	(A)	Gypsum	Barite
	(C)	Chalcopyrite (D)	Galena
47.	Tour	rmaline is the type mineral for which of the fo	ollowing crystal classes?
	S	Rhombohedral—Hemimorphic class of Hexa	
in the second	(B)	Tri-rhombohedral class of Hexagonal syste	em.
	(C)	Rhombohedral class of Hexagonal system	
٠	(D)	Trigonal class of Hexagonal system	
48.	Apat	tite is the type mineral for which of the follow	ving crystal classes?
	(A)	Hemimorphic classes of Hexagonal system	
	(3)	Tripyramidal class of Hexagonal system	
	(C)	Tripyramidal class of Tetragonal system	
	(D)	Trapezohedral class of Hexagonal system	
49.	Sche	eelite is the type mineral for which of the follo	owing crystal classes?
	(A)	Sphenoidal class of Tetragonal system	
	(B)	Hemimorphic class of Tetragonal system	
	مول	Tripyramidal class of Tetragonal system	
	(D)	Trapezohedral class of Tetragonal system	

50.	W IIIC	if of the following inflictat given is a se	da pji	A .
	(A)	Spodumeme	D	Aegirine
	(C)	Enstatite	(D)	Diopside
7.				
51.	In ele	ectrical resistivity survey, the field ger	nerated	l data is known as
	W	Approximate resistivity	(B)	Apparent resistivity
	(C)	Resistivity	(D)	True resistivity
52.	The mine		espond	s to which of the following pyroxene grou
	(A)	Hypersthene	P	Ferrosilite
	(C)	Enstatite	(D)	Diopside
5 3.	Jade		at crys	stallizes in which of the following crysts
	(A)·	Triclimic	(B)	Tetragonal
	(C)	Orthorhombic	0	Monoclimic
54.	Нуре	ersthene crystallizes in which of the fo	llowing	g crystal system?
	(A)	Monoclimic	(B)	Triclimic
	(0)	Orthorhombic	(D)	Hexagonal
55	Whic	ch of the following feldspathoidal mine	eral sho	ows a moderate Birefringence?
	(A)	Leucite	DY	Cancrinite
	(C)	Nepheline	(D)	Sodalite
	W-1180			

56.	Qua	arme structure is typical in which c	i the lon	owing leluspais
	(A)	Albite	(B)	Labradorite
	10	Microcline	(D)	Orthoclase
E 77	Which	h and is not a hungleyseed group real	ra?	
57.		h one is not a hypalsyssal group rock	(B)	Sills
	(A)	Dykes	(D)	Flow-structure
1, "	(C)	Small lacolith		Flow-structure
58.	The	chemical classification of igneous roc	ks are es	sential for discussion of
		Origin	(B)	Color index
	(C)	Silica saturation index	(D)	Crystallisation process
£ .				
59.	The	carbonates are composed mainly of c	alcite —	———and or ankerite.
00.	(A)	Pyroxene	(B)	Fluorite
	(C)	Monazite	D	Dolomite
	(0)	Wonazio		2010.11110
	-			
60.	In th		h curves,	bend upward to the right of indicates,
	(1)	Increase the acid members	(B)	Increase the base
	(C)	Indicate the saturation point	(D)	Base line
61.	Teph	erite is a		
	(A)	Olivine-rich basalt	B	Olivine-free basalt
	(C)	Peridotite type	(D)	Lamprophyres type
×3 35				
62.	Perio	lotite generally forms as		
	JAN .	Sills and dykes	(B)	Batholiths
	(C)	Chonolith	(D)	Bysoalith

63.		ltered porphyritic mica peridotite cor h one of the following	ntaining	g olivine and phlogopite is associated with
	(A)	Breccia	(8)	Kimberlite
	(C)	Spilite	(D)	Serpentinite
64.	Less rock	than 35% of mafic minerals like hor	nblende	e or hypersthene (\pm augite) represents the
	(A)	Basalt	(B)	Andesite
	(C)	Gabbro	D.	Diorite
			i.	
65.	Whic	ch metamorphic rock is hypersthene g	ranite?	
	(A)	Schist	(B)	Gneiss
	(C)	Slate	DY	Charnockite
66.	Whe	n the attacking fluids are in vaporous	state tl	he process is distinguished as
43 X	(A)	Granulation	S	Penumatolytic metasomatism
	(C)	Dolomitization	(D)	Kaolinisation
67.		metamorphic rock have predominance vable minerals that structure is called		xy, lamellar, tabular, rod - like and highly
16.14	(A)	Granulose structure	(5)	Schistose structure
	(C)	Gneissose structure	(D)	Maculose structure
	4			
68.		lite and fine – grained mica Schists ha process is called	ave bee	n formed from gneisses of deep seated zone
	100	Regressive metamorphism	(B)	Relicts
	(C)	Saussuritisation	(D)	Plutonic Metamorphism
69.	Who	is proposed by at present ten metamo	orphic f	acies?
	4	Myashiro	(B)	Eskola
	(C)	Fermor	(D)	Vanhise
· .				
70.	The	green – schist facies is		
10.	(A)	Medium grade metamorphism	(B)	High grade metamorphism
	(A)	Low grade metamorphism	(D)	Medium to High grade metamorphism
~				
CUC	E/19		14	₩

71.	The	process by which heavy minerals are sepa	arated from light ones are called
	(A)	Residual concentration process	(B) Sublimation process
	100	Mechanical concentration process ((D) Replacement process
	~		
5 0	VI71 ·	l l	in filling type?
72.		ich ore mineral deposit is formed by Brecci	10 m
	(A)	Baryte	Uranium
	(C)	Gold	(D) Galana
73.	Whi	ich is consider as a Gangue minerals?	
	(A)	Liquid minerals	
	(B)	Fe – rich minerals	
	(0)	Associated non metalic materials of a d	eposit
	(D)	Metal content of the ore	
68	(D)	Metal content of the ore	
74.	Mat	tch the following:	
	(a)	735.503. X	riety of corundum
	(b)		riety of corundum
	(c)	The state of the s	iety of corundum
	(d)	O.Topaz 4. Red varie	ety of corundum
		(a) (b) (c) (d)	
		4 3 2 1	
	(B)	2 1 4 3	
	(C)	2 3 1 4	
	(D)	4 2 3 1	
75. ·	Qua	artz when heated, transforms into high te	mperature modification, choose the correct one
	acco	ording to increasing temperature	
	(A)	Quartz 870°C Cristobalite 1470°C Trid	ymite 1713°C melt
	A)	Quartz 870°C Tridymite 1470°C Cristo	balite 1713°C melt
	(C)	Tridymite 870°C Quartz 1470°C Cristo	balite 1713°C melt
	(D)	Melt 870°C Cristobalite 1470°C Tridyn	

10.	· A	Ruby and Sapphire	in lorni	(B)	Diamond and tourmaline
		Topaz and Beryl	1242	(D)	Garnet and Zircon
	(C)	Topaz and Beryl		(D)	Garnet and Zircon
77.	Blea	ching clay is called			
	(A)	Ball Clay	1 6 1		Fuller's Earth
	(C)	Bentonite		(D)	Fire clay
78.	Mat	ch the following Distrib	ution of	Gypsum depo	sits in India
		List I		List II	
	(a)	Jodhpur	1.	Himachal Pra	ndesh
	(b)	Tiruchirapally	2.	Jammu-kashi	mir
	(c)	Doda	- 3.	Tamil Nadu	
ga o	(d)	Chamba	4.	Rajasthan	
		() ()	(1)		
		(a) (b) (c)	(d)		
		4 3 2	1		
\$3.14 2.14	(B)	1 2 3	4		
	(C)	2 1 3	4		
	(D)	4 1 3	2	a g	
79.	Whi	ch of the following corr	ectly pa	ired	
	W	Gypsum – Cement		(B)	Kyanite – Alloys
3.	(C)	Sillimanite – Paint		(D)	Feldspar – Irmandstell
80.	Whi	ch of the following is in	correctl	v paired.	
00.	(A)	Hish - magnetite - r			e
	(B)	Intermediate – Chal			5.5.2 10.00
	(C)	Low - Stibnite - Res			
	· (D)	Quartz – Feldspar –			
		, Quarta i ciuopai	Lordopo	Maria Britis	×

81.	Resis	stivity meter a,d,c type manufactured by		
	(A)	Indian Institute of Technology, Mumbai		
ă.E.	DY	National Geophysical Research Institute, Hyderabad		
	(C)	Geological Survey of Ind	ia, Kolkatta	
	(D)	Indian Institute of Geom	nagnetism, Mumbai	
e e				
82.	Whic	h of the following is incor	rectly paired?	
-	(A)	Fresh water –	Fresh water and mineralized water may be obtained from Artesian well	
	(B)	Salt water –	In thicker artesian aquifers, the lower zone may contain	
	0	Artesian aquifer –	Is not a good source of water supply	
	(D)	Peizometric surface -	Must lie well above the ground surface	
83.	Whic	h of the following stateme	ents are incorrect?	
00.	I.	Sedimentary rocks are r		
	II.	Porosity is storage capac		
	III.		here all fractures are thoroughly interconnected	
	IV.	The same of the sa	water is almost negligible	
	(A)	I and II	III	
	(C)	II and III	(D) I and IV	
٩, ,,		0.		
0.4	Δ	and norman ability of avoyal	TA.	
84.	(A)	age permeability of gravel 41 m / day	(B) 4100 m / day	
	(A)	10		
		410 m / day	(D) 4.10 m/day	
85.	In el	lectrical resistivity meth	nod, inner electrode comprises of porous pots filled with	
	(A)	$\mathrm{H_2SO_4}$	CuSO ₄	
	(C)	HCl	(D) Citric acid	
0.0	ъ.		Kamatahaia	
86.		tivity of Brackish water in		
	(A)	$0.3\Omega m$	$\Omega = 1\Omega m$	
	(C)	$5\Omega m$	(D) $< 40\Omega m$	

87.	Veloc	ity of ground water flow in a porous media is	
	(A)	inversly proportional to hydraulic gradient	
	9	proportional to hydraulic gradient	
	(C)	not related to hydraulic gradient	
4	(D)	related to piezometric head	
88.	In De	eccan traps the columnar joints and vesicule	s have
00.	.(4)	Primary porosity (B)	Secondary porosity
- 4	(C)	Both primary and secondary porosites (D)	They are impervious
	(0)	Down primary and recondary personnes (2)	
89.		eability of a material is a measure of	
	(A)	Voids available in the material	
	(B)	Voids and solid particle available	
	VOP	Capacity to transmit water thro' interstics	
	(D)	Capacity to retain water in the material	
	ar e		
90.	The r	ratio of volume of water retained in the rock	to the total volume of the rock is called as
	V	Specific retention (B)	Specific yield
	(C)	Porosity (D)	Wilting point
91.	Preci	pitation in the form of ice is called	
V 1.	(A)	Drizzle (B)	Sleet
	(0)	Snow (D)	Hail
92.		ch one is known as "fossil water"?	
	(A)	Juvenile H ₂ O (B)	Plutonic water
		Comate water (D)	Meteoric water
93.	Cons	ider the following statement regarding land	slide.
a	I.	Slumping is the sudden movement of rock	mass
	II.	Subsidence is the sudden movement of top	soil.
	(A)	Both I and II are correct	I is correct II is incorrect
	(C)	I is incorrect II is correct (D)	Both I and II are incorrect
		and the second of the second o	

18

94.	Cons	nsider the following regarding a proposed Tunnel project		
	I.	Aerial Photography and Seismic Survey are commonly adopted		
	II.	Hydrological conditions, particularly hydrostatic heads are observed		
37	W	Both I and II are correct (B) I is correct II is Incorrect		
	(C)	I is Incorrect II is Correct (D) Both I and II are Incorrect		
95.	Cons	sider the Statement regarding site selection of dam		
	I.	A dam is essentially a water impounding structure		
	II.	Perfectly Impervious rocks throughout the site may not be available in all cases		
		Both I and II are True (B) I is True II is False		
	(C)	I is False II is True (D) Both I and II are False		
96.	Con	sider the following statements regarding Building stones		
	I.	Gondwana formations of India have very good quality building stones		
	п.	The fine grained Sand stones of cuttuk is known as Athgarh Sandstone		
	W	Both I and II are True (B) I is True II is False		
	(C)	I is False II is True (D) Both I and II are False		
97.	Whi	ich of the following is not a building stone?		
	(A)	Granite (B) Marble		
	401	Moon Stone (D) Slate		
98.	Con	sider the following statements regarding geochemical element dispersion.		
	I.	Mobility is only relative		
	и:	Among Pb, Au, Cu, Zr, and Ag, Pb is most mobile		
	III.	Influence of environment is an Important factor		
	(A)	All are correct		
	(B)	II and III are correct I is Incorrect		
	(C)	I and II are correct III is Incorrect		
7	0	I and III are correct II is Incorrect		

99.	The g	general term used for mass n as	movement of	rocks under the	influence of gravity	S
	W)	Rock fall	(B)	Slumping		
	(C)	Mass wasting	(D)	Lahar		
			N 2			
100.	Steep	slope resulted from differentia	al weathering	of rocks are known	ıas ,	
	W	Escarpment	(B)	Cuesta		
	(C)	Strath	(D)	Mesa	18	
						1
						1
101.	"Shad	low Zone" of earth quakes is in	between			
3 1	W	105° – 145°	(B)	100° – 130°		
	(C)	90° – 145°	(D)	105° – 160°		
102.	Cause	es of tectonic earthquake is				
	1	Faulting, breaking and foldin	g of the layers	of the earth		
	(B)	Flow of hot magma in a erupt				
	(C)	Rising of underground wave				
	(D)	All of the above				
103.	Horni	tos are the lava flows of —	size.			
. 1	(A)	small	(B)	large		
	(C)	medium		very small		
			* **			
104.	Barre	n Island volcano is characteris	ed by			
	(A)	Submarine volcanism		Resurgent volcan	ism	
*0	(C)	Continental volcanism	(D)	All the above		
			C 80		7/	5

105.	Accor	ding to marry fless, the bea hoor sp	neading !	is due to.
	(A)	Spreading of Sial layer		
	(B)	Mantle-wide ascending currents		
	VO	Mantle-wide convection currents		
	(D)	Spreading of mantle plumes		
			5.4	
106.	In the	o continental drift theory who gave	the idea	that the continent broke due to tidal force
100.	of mo		0110 14104	
	(A)	Wegener	(B)	Henry Less
1 m2	10	Taylor	(D)	Du Toil
107		and the second second		
107.		asy exists in the:		Crust and upper mantle only
	(A)	Crust only	(D)	Crust and lower mantle only
	(C)	Crust and transition zone only	(D)	Crust and lower mantie only
10				
108.		ertain level of the Earth's crust all have the same mass" This stateme		of material having unit-cross sectional area to:
	(A)	Base level of Erosion	0	Principles of Isostasy
	(C)	Law of Conservation of mass	(D)	Dirac's principle
			- H	
	6			
100	m)			
109.		composition of sial is:	(B)	Ultrabasic
	(A)	Basaltic	(D)	Magic
		Granitic to granodioritic	(D)	Magic
				잃었다. 그 왕이 자리 나를 하는 것이다.
110.	Gute	nberg discontinuity lies at a depth	of	
	(A)	2,700 kms	(8)	2,900 kms
	(C)	2,100 kms	(D)	4,210 kms
ó		그 문학자들은 말 집에 다	21	CUGE/19
rax.				[Turn over

111.	The V	Vindhyan System of rocks rest unconfor	mabl	y over the
	(A)	Younger Cuddapah rocks		
	B	Older Cuddapah rocks		
	(C)	Both older and younger Cuddapah roo	eks	
	(D)	Precambrian rocks		
· · · · ·				
112.	The e	equivalent of Cuddapah system Andhra	Prad	esh is
112.	(A)	Dogra slates of Kashmir	(B)	Chail and Simla Slates of H.P.
	(0)	Both (A) and (B)	(D)	None of these
			(2)	1,010 02 011000
110	mı ı		1 .	
113.		ength of Cuddapah basin of Andhra is	about	
	(A)	350 km	(D)	340 km
	(C)	330 km	(D)	300 km
114.	The t	ype area for the Dharwarian system of	rocks	is
4	(A)	Rajasthan	VD)	Karnataka
	(C)	Madhya Pradesh	(D)	Orissa
115.	Who	has classified the rocks of Dharwar sy	ystem	of South India into Chloritic division and
	Hom	blendic division?		
- 7	(A)	B. Rama Rao	(B)	L.P. Mathur
E 1	(3)	W.F. Smith	(D)	W.D. West
116.	Accor	rding to B. Rama Rao. The Dharwarian	rocks	s are classified into
	(A)	Lowe Dharwar, Upper Dharwar		
	0	Lower, Middle and Upper Dharwars		
	(C)	No classification of Dharwar System		
	(D)	Quartzites, Calcareous and Ferrugino	ous sil	lts
CIIG	E/10	99		

18 1		500 m	(B) 150 m	
100	(C)	100 m	(D) 300 m	
118.	Panja	al Volcanics is of which of the stratig	graphic age	
,	100	Lower Permian – Upper Permian		
	(B)	Lowermost Permian - Carbonifer	erous	
	(C)	Devomain		
	(D)	Cambrian – Middle Silurian		
2				
119.	Cons	sider the following statements:		
	I.	Unit of gravitational acceleration	'Gal' is named after Italian Scientist Galileo	
	II.	In magnetic prospecting, unit Mill	lligal is employed	
	III.	Gravitational force increases when	ere mineral deposits have higher density	
	IV.	The gravitational acceleration var	ries from 978 cm/sec ² to 983 cm/sec ²	9 2
	(A)	I, II and IV are correct	(B) II, III and IV are correct	
. 10	(C)	All are incorrect	All are correct	
120.	Kam	alial formation belongs to which of th	the following sub-groups?	
	(A)	Lower Gondwana	(B) Middle Siwaliks	
	(C)	Upper Siwaliks	Lower Siwaliks	
121.	The	Siwalik formation has a rich assem	ablage of which of the following types of fauna?	
	1	Vertebrate fauna	(B) Invertebrate fauna	
	(C)	Stromatolites	(D) Trilobites	
			CUG	F.

117. Thickness of saline series is almost

122.	Cum	Cumbum formation comprises which of the following rock types?						
	(A)	Limestones	9	Shales				
9.1	(C)	Quartzites	(D)	Granites				
			7					
123.	Cudo	lapah basin of Andhra Pradesh has a s	pread	over				
	(A)	26,000 sq.km	(B)	30,000 sq.km				
	SOM	36,000 sq.km	(D)	20,000 sq.km				
124.	Kudı	iremukh area is known for exploration	of wh	ich of the following mineral deposit?				
	(A)	Zine deposits	(B)	Mica				
	W.	Iron ore	(D)	Gold				
125.	The t	three microfossil groups most common	ly used	l are				
	(A)	Conodonts, Acritarchs, Ebridians						
	(B)	Ostracodes, Diatoms, Radiolaria						
	(C)	Diatoms, Conodonts, Radiolaria						
8, .	0	Foraminifera, Nannofossils and Poly	nomor	phs				
126.	Micro	oscopic siliceous algae under Diatomac	ea are	called				
14	(A)	Bacteria	1	Diatoms				
	(C)	Coccoliths	(D)	Silicofiagellates				
127.	The r	roots of Bothrodendron are placed und	er the	genus				
	4	Stigmaria	(B)	Calamites				
	(C)	Annularia	(D)	Phyllotheca				

128.	In Gr	aptolites, the theca were attached t	to a rock by	y a rod like branch known as
	(A)	Sicula	. 0	Stipe
	(C)	Stolotheca	(D)	Theca
		distribution of the second		
	2 8 78 o			
129.	In tri	lobites the arched anterior extensi	on of axial	segments of thorax and front of pygidium
	which	n project beneath next forward segr	nent is cal	ed
	(A)	articulating furrow	3 - 7	
	(B)	axial node		
	(C)	axial segment		
	DA	articulating half segment / ring		
	16			
130.	The c	correct order of the larval developm	ent of trile	bites is
	S	Protaspid stage-Meras pid stage-	Holaspid s	tage
	(B)	Meraspid stage-protaspid stage-I	Iolaspid st	age
) 	(C)	Protaspid stage-Holaspid stage-M	Ieraspid st	age
	(D)	Holaspid stage-Meraspid stage-P	rotaspid st	age
	1 2 7			
131.	Whic	ch among the following belongs to t	he order of	trilobites?
y x	W	Proparia	(B)	Gymnoblastea
	(C)	Graptolithina	(D)	Aleyonaria
132.	Trilo	bites, transverse division of thora	x consisti	ng of an axial and two pleural portions is
Torrecon	calle	X II.		
	(A)	Thorax	(B)	Pygidial segments
	(C)	Occipital segments	01	Thoracic segments
			100	

The deformation circle into ellipse given below represents 133. Compression (A) (B) Couple (C) Torsion Tension Joints resulting from slight elongation parallel to the areas of folds are called Extension joints (B) Release joints Horizontal joints (D) Conjugate joints (C) More ductile substances, rupture may be preceded by 135. Compression Tension (A) Necking (C) Shear - lie at or near the foot of mountain ranges and are confined to areas of active 136. faulting. Piedmont scarps Fault line scarps (A) Fault scarps (C) Offset ridge 137. - owes its relief directly to the movement along fault. (A) Composite fault Scarplets

(C)

Fault line scarp

Fault scarp

138. Strike slip fault, showing relative movement

139. Line xy is perpendicular to ab and cd and is 160 feet long; the bed drops 100 feet vertically in 160 feet horizontally, determine the dip

(A)
$$\delta = 30^{\circ}$$

(C)
$$\delta = 34^{\circ}$$

(D)
$$\delta = 36^\circ$$

140. The symbol given below represents

- (A) Doubly plunging Anticline
- Doubly plunging Syncline
- (C) Non-plunging Anticline
- (D) Non-plunging Syncline
- 141. According to Ramsay, the degree of curvature in the outer arc of the fold is less than that of the curvature of the inner arc is called

Class 1 Folds

(B) Class 2 Folds

(C) Class 3 Folds

(D) Class 4 Folds

142. Match the differential forces which they belong:

1. Couple

2. Tension

3. Compression

4. Torsion

- (a)
- (b)
- (c)
- 3
- OR ASTRONO

(A)

Z

1

- 4

1

2

a 1 70

- (D) 1

3

(d)

3

143. Peridot is a gem variety of

Olivine

(B) Pyroxene

(C) Amphibole

(D) Feldspar

144. Ca Mg SiO₄ is the chemical composition corresponding to which of the given minerals

(A) Hypersthene

(B) Hornblende

Monticellite

(D) Wollastonite

145.	Cupri	te is the type mineral for which of the	followi	ng crystal classes?
177.14	(A)	Normal class of Isometric system		
	(B)	Tetrahedral class of Isometric system	n	
	(C)	Sphenoidal class of Tetragonal syste	m	
	DA	Plagiohedral class of Isometric syste	m	
146.	The A	Aluminous variety of Anthophyllite is	known	as
	(A)	Grunerite	(8)	Gedrite
	(C)	Cummingtonite	(D)	Lamprobolite
147.	The f	orm and habits exhibited by Anthoph	yllite is	
	4	Long slender to Acicular	(B)	Prismatic tabular
	(C)	Stout prismatic	(D)	Globular
			10.00	
148.		cophane is an Amphibole group mi	neral t	hat crystallizes in which of the following
	W	Monoclinic	(B)	Triclinic
	(C)	Orthorhombic	(D)	Tetragonal
149.	Grun	nerite crystallizes in which of the follo	wing cr	ystal systems?
	(A)	Triclinic	(B)	Orthorhombic
	(C)	Tetragonal	9	Monoclinic
			1000	
150.	"Cvr	natolite" is an alteration product of w	hich of	the following pyroxene group mineral?
1301	(A)	Wollastonite	(5)	Spodumeme
	(C)	Aegirine	(D)	Diopside

					*	
151.	Whic	h of the followin	g statements fa	lls true for th	ie mineral nepl	neline?
	(A)	Nepheline occu	ırs with original	l free quartz		
	0	Nepheline don	ot occur with or	iginal free qu	ıartz	
1	(C)	Nepheline occu	ers along with sa	aturated rock	s	
	(D)	Nepheline occu	ers along with o	ver saturated	l rocks	
	-0		the last			3.
152.	Melil	ite crystallizes i	n which of the fo	ollowing crys	tal systems?	
,	(A)	Isometric		(B)	Pseudoisomet	ric
	S	Tetragonal		(D)	Hexagonal	2
153.	The f	eldspar group of	minerals range	in hardness	from	
	(A).	3.0 - 3.5			6.0 - 6.5	15
	(C)	4.0 - 4.5		(D)	7.5 - 8.5	1.8
154.	The p	early to opalasc	ent variety of A	lkali feldspar	is known as	
	(A)	Aventurine		(8)	Moonstone	
	(C)	Sunstone		(D)	Cleavelandite	ı
					71 4 7	
155.	The a	ngle of inclinati	on β in orthock	ase feldspar	is	

- (A) Calcic core and a sodic rim
- Sodic core and calcic rim
- (C) Intercalations of sodic and calcic layers
- (D) Spherulitic growth of calcic and sodic feldspars

(A)

(C)

 90°

 87°

63° 57'

83° 54'

$\cdot 157.$	When	augite is a predominant mafic mine	erals in b	asalt then the term is
	SA	Ankaramite	(B)	Spilite
	(C)	Alkali basalt	(D)	Limburgite
158.	The h	lue feldspar in a Alkali syenite is a	1.5	
100.	(A)	Labradorite	(B)	Kyanite
	.(0)	Anorthoclase	(D)	Sodalite
			U.	
*			•	a manadaria
159.		out the soda bearing feldspar which	V2	
	(A)	Orthoclase	(B)	Apatite
		Albite	(D)	Quartz
160.	Inac	continuous Bowen's series,plagioclas	se feldspa	
	(A)	Calcic to Olivine	(B)	Calcic to Biotite
	S	Calcic to Sodium	(D)	Calcic to ca-pyroxene
161.	The r	oeninsular India represent which su	ite?	
101.	(A)	Spilitic suite	· 100	Arctic suite
	(C)	Ijolite-melteigite	(D)	Trachydolerite
			* .	
	****	1	on and s	sodatime feldspar are present in a rock i
162.	calle		ar and s	souatime leluspar are present in a reen -
	V	Trachyandesite	(B)	Hornblende trachyte
	(C)	Augite trachyte	(D)	Biotite trachyte
1				
100	1X7h a.	n clinoenstatite is heated it will bre	akun inte	
163.	When	Olivine and liquid	(B)	Leucite and liquid
	(C)	Pyroxene and amphibole	(D)	Pyroxene and liquid
	(0)	1 yroxene and ampinooic	(2)	
164.			ituents s	imultaneously crystallise is called as Eutectics
	(A)	Metastable	(D)	Solidus
	(C)	Liquiders	(D)	Dollads

165.	Whic	h lime stone varities have been forme	d by bi	ogenic precipitation from Sea water
	(A)	Allochthonous	0	Autochthonous
	(C)	Argillaceous limestone	(D)	Kankar
,				
166.	The a	accumulation of limy secretion of float	ing typ	e of sea organisms presence in the
	(A)	Biohermal lime stone	B	Pelagic lime stone
	(C)	Calc - Sinter lime stone	(D)	Biostromal lime stone
40	,			
167.	Diff.	uing showing and minouslessical notice	to th	s analoging walks and
107.	Diffe	ring chemical and mineralogical natur		
	(C)	Concretions	(B)	Secretions
	(C)	Colloids	(D)	Dendrites
	10			
168.		sformation of loose sediments deposit this is called as	ed in t	the settlement basin to solid cohesive rock
	(A)	Precipitation	(B)	Evaporation
	(C)	Continued evaporation	DY	Diagenesis
	7.2			
169.	A sar	ndstone which splits along the micaced	ous lay	ers is called as
	W	Flag stone	(B)	Free stone
	(C)	Silt stone	(D)	Gray wake
	E.			
170.	Crate	er like depressions is formed by		
170.	(A)	Ripple marks	VP/	Rain prints
5	(C)	Mud cracks	(D)	Graded bedding
	(0)	Widd Gracks	. (15)	Gradu Southing
171.		very fine megascopic layer in a sedime		
	(A)	Stratum	(B)	Bed
	0	Lamina	(D)	Diagenesis
172.	Cons	ider the mineral which have the melti	ng poi	nt of 1713°C
	(A)	Olivine	(3)	Cristobalite
	(C)	Sillimanite	(D)	Tridymite

32

	The second secon			
173.	Which of the	following is	correctly	naired?
110.	Willen of the	TOHOWING 18	correctly	parrou.

Magnesite - Irregular veins and fracture zone

(B) Bort - Spheroid aggregates with radiated structure

(C) Ballas - Imperfectly crystallised diamond

(D) Diamond - Crystalline modification of mixed carbon

174. Most copper deposits have been formed.

Hydrothermal solution with replacement

- (B) Sedimentary deposits
- (C) Metamorphic deposits
- (D) Both Sedimentary and metamorphic deposits

175. The most-common ore of lead is called

(A) Psilomelane

(B) Chromite

(C) Phrite

Galena

176. Match the List I and List II correctly and select your answer using the codes given below:

List I List II

- (a) Pyrolusite 1. Mn₂O₃, 2H₂O
- (b) Hausmanite 2. Mn₂O₃ (c) Braunite 3. Mn₃O₄
- (c) Braunite 3. Mn₃O₄ (d) Psilomelane 4. MnO₂
- (a) (b) (c) (d) 4 3 2 1
- (B) 3 2 1 4
- (B) 3 2 1 4
- (C) 2 1 4 3
- (D) 1 2 3 4

177. The important minerals of lead

- (A) Quarta Feldspar Olivine
- (B) Sphalerite ZincBlende Zincite
- Galena Cerussite Anglesite (D) Hemimorphite Calamine Barate

178. Find the correct sequence of following Iron ores.

- (A) Goethite limolite laterite phrite
- Magnetite Hematite Limonite Goethite
- (C) Azurite malachite Cuprite Corellite
- $(D) \qquad Malachite-Pyrite-Chakopyrite-Enargite \\$

	7.7 . 1	. 1	C 11 '			4 - 1-	
179.	Match	the	following	ın	correct	match	

(a) Monazite

1. Kerala

(b) Gold

2. Tamilnadu

(c) Lignite

3. Karnataka

(d) Diamond

4. Madhyapradesh

(a)

(b)

(d)

1

4

4

(A)

3

3

2

C) 3

2

.

(c)

4

, ,

2 1 1

3 4

180. Point out the wrong statement in the following statements regarding Hydrothermal deposits:

- (A) There are three essential conditions for the formation of hydrothermal deposits
- The main diamond ferrous pipe is of metamorphic origin
- (C) At suitable physico-chemical environment deposition takes place
- (D) Hydrothermal deposits occur in most common forms are veins and cavity filling

181. Epithermal deposits are formed at

- (A) temperature range from 200°C to 300°C
- (B) temperature range from 300°C to 400°C
- temperature range from 50°C to 200°C
- (D) temperature range from 50°C to 100°C

182. The processes of formation of mineral deposits are grouped into

- magmatic, sedimentary, metamorphic
- (B) residual liquid segregation
- (C) residual liquid injection
- (D) immiscible liquid segregation

183. Which of the following statements are incorrect?

- I. Open wells storage capacity of water is available in the well itself
- II. Does not require sophisticated equipment
- III. Do not require much space
- IV. Can be constructed quickly
- (A) I and II

(B) I and III

🏈 III, IV

(D) II

184. Apparent resistivity for measured resistance in schumberger array is determined by ______ formula

(A)
$$\rho a = \frac{4b}{\pi L^2 R}$$

$$\rho a = \frac{\pi L^2}{4b} R$$

(C)
$$\rho a = \frac{\pi L^2}{4 h R}$$

(D)
$$\rho a = \frac{\pi L^2 4b}{R}$$

185. SAR is defined as

(A)
$$\frac{Na}{Ca + Mg}$$

(B)
$$\frac{Ca + Mg}{Na}$$

$$\frac{Na^{+}}{\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}}$$

(D)
$$\sqrt{\frac{(Ca + Mg)/2}{Na}}$$

186. In Ghyben - Herzberg principle, the interface occurring at a depth h_s BMSL given by

(A)
$$(hs - hf)rf = h_s r_s$$

$$(h_s + h_f)rf = h_s r_s$$

(C)
$$\frac{(h_s + h_f)}{r_f} = \frac{h_s}{r_s}$$

(D)
$$\frac{(h_s + h_f)}{h_s} = \frac{r_f}{r_s}$$

- 187. Cable tool method
 - (A) for drilling unconsolidated strata
 - (B) reverse-circulation method
 - (C) drilling accomplished with compressed air
 - drilling is accomplished by lifting and dropping
- 188. Permeameter is the instrument used to measure
 - (A) Porosity of rock

- Permeability of rock
- (C) Infiltration rate of g. water
- (D) Yield of g. water
- 189. The capital cost for Filter point tube wells in orissa alluviam is
 - (A) Rs.5,000 15,000

Rs.10,000 -15,000

(C) Rs.5,000 - 10,000

(D) Rs.3,000 - 10,000

190.	Mat	tch List I with List II a	and select	correct answer :
	100 100 M	List I		List II
	(a)	Chaliophile	1.	Silicate
	(b)	Atmophile	2.	Sulfide
-w	(c)	Lithophile	3.	Iron
	(d)	Siderophile	4.	Atmosphere
			(1)	
		(a) (b) (c)	(d)	
	(A)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 3	
	(C)	$egin{array}{cccccccccccccccccccccccccccccccccccc$	4	
1	(C)			
	(D)	1 4 3	2	
191.	Wid	lmanstatten figure ger	nerally fo	und in
	(A)	Chondrites		(B) Achondrites
	(0)	Siderites		(D) Siderolites
192.	Con	sider the following sta	tements	regarding Radioactivity
102.	I.	Radioactivity is me		
	II.			sed in radioactive prospecting
	III.	A		so used in prospecting
	IV.	M. Carlotte and M. Carlotte an		ts usually Argon gas
		San Table 1	er consis	to usually rigon gas
	(A)		TTT 1.T	T
	(B)	I and II are correct		
	4	I, II and III are cor		
	(D)	I is correct, II, III a	and IV ar	e Incorrect
193.	Cor	nsider the following st	atements	
	I.	Geophone is a dete	ctor	
6	II.			ns in the ground and convert to electric pulses
	S-12/11/05			

- III. Geophone is usually known as seismometer
- IV. There are several types of geophones in use

(A) All are True

(B) I, II and IV are True

(C) II, III and IV are True

(D) I and II are True

194.	Whic	ch of the following metallic element fou	ınd in o	crude oil?
	(A)	Iron	(B)	Copper
	VOS	Nickel	(D)	Zinc
	1			
195.	Lowe	est rank soft, earthy or crumbly lignite	is call	ed
TO THE PARTY.	(A)	Bituminous coal		Bog coal
	(C)	Boghead coal	(D)	Torbanite
ville.				
196.	Whic	ch of the following is NOT an impact of	minin	g?
7	Jun .	Weathering	(B)	Sedimentation
	(C)	Water logging	(D)	Sea water intrusion
197.	Cons	sider the following statement:		
197.				
	I.	In mines, shafts can be away from the	e ore b	ody
	II.	If it connected by tunnels known as D	rive	
	(A)	Both I and II are correct	(B)	I is correct II is incorrect
	(C)	I is Incorrect II is correct	(D)	Both I and II are Incorrect
y m				
198.	The	ore estimated based partly on compute	tions a	and partly on measurements is said to be
	(A)	Inferred ore	(8)	Indicated ore
*	(C)	Measured ore	(D)	Computed ore
199.	Whi	ch of the following sampling technique	e is b	est suited to beded and vein type minera
100.	depo			
	(A)	Grab	(3)	Channel
	(C)	Bulk	(D)	Drilling
200.	Asse	rtion (A) - Surface of the ore bed or ve	ins sho	ould be cleaned
	Reas	son (R) - To asses the Grade of the ore	¥. =	
	· (A)	Both (A) and (R) are True; (R) is con	rect ex	rplanation of (A)
	(B)	Both (A) and (R) are True; (R) is not		
	(C)	Both (A) and (R) are False		
	DI	(A) is True but (R) is False		

