Sl. No.:	40000809

Register Number			
runioer			

2016

Paper I

MECHANICAL AND PRODUCTION ENGINEERING AND AUTOMOBILE ENGINEERING

(Degree Standard)

Time Allowed: 3 Hours]

[Maximum Marks: 300

GFTA/16

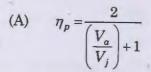
Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open
 it at the commencement of the examination. As soon as the signal is received you should tear the right
 side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series without any omission and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An Answer Sheet will be supplied to you separately by the Invigilator to mark the answers.
- 6. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with <u>Blue or Black ink Ball point pen</u> in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

A • © D

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination.


 After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 11. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 12. Do not tick-mark or mark the answers in the Question booklet.

400000809

GFTA/16

1.	When	the stroke is equal to the b	ore, the engine is	called a						
	(A)	V-engine	(B)	Inline engine						
	5	Square engine	(D)	Rectangular engine	е .					
2.	A Car	rnot engine rejects 30% of a e is	bsorbed heat to a	sink at 30° C. The t	emperature of the heat					
	(A)	100°C	(B)	433°C						
	(0)	737°C	(D)	1010°C						
3.	An er	ngine working between posi	tive temperature							
,	(A)	can be a heat pump								
	(B)	can be a heat pump only i	f frictionless mac	nine is used						
	(C)	must be a heat pump								
	01	cannot be a heat pump								
		aws in 325 kJ of heat from to a lower temperature. The 0.8								
				0.9						
		0.6	(D)	0.55						
5.	A gas contained in a cylinder is compressed, the work required for compression being 5000 kJ. During the process, heat interaction of 2000 kJ causes the surroundings to be heated. The changes in internal energy of the gas during the process is									
	(A)	-7000 kJ	(B)	-3000 kJ	·					
	500	+3000 kJ	(D)	+7000 kJ						
6.	Addi	tives are added in the lubric	cants to have							
	(A)	detergent-dispersant char	racteristics							
- 7	(B)	pour point depression	2							
	(C)	antifoam characteristics			b .					
	0	all of the above		•						

7. Which one of the following is the correct expression for the propulsion efficiency of a jet plane (neglecting the mass of fuel)? where $V_j \to Jet$ velocity and $V_a \to flight$ speed

$$\eta_p = \frac{2}{\left(\frac{V_j}{V_a}\right) + 1}$$

(C)
$$\eta_p = \frac{2}{\left(\frac{V_a}{V_j}\right) - 1}$$

(D)
$$\eta_p = \frac{2}{\left(\frac{V_j}{V_a}\right) - 1}$$

8. Coefficient of compressibility (B) of a fluid is the ratio between

Relative change in volume and change in pressure

- (B) Increase in pressure and relative change in volume
- (C) Change in heat and change in temperature
- (D) Change in temperature and heat energy applied
- 9. The relative jet exit velocity from a rocket is 2700 m/s. The forward flight velocity is 1350 m/s. What is the propulsive efficiency of the unit?
 - (A) 66.66%

D 50%

(C) 33.33%

- (D) 90%
- 10. The curved lines on a psychrometric chart indicates
 - (A) Dry bulb temperature

(B) Wet bulb temperature

(C) Specific humidity

- Relative humidity
- 11. Which of the following refrigerant has the higher Global Warming Potential (GWP)?

R-12

(B) R-22

(C) R-134 a

(D) R-717

- 12. The liquid refrigerant is sub-cooled in order to
 - (A) Eliminate the chances of vapour getting into the throttle valve
 - (B) Reduce compressor overheating
 - (C) Avert checking of evaporator tubes
 - Enhance the cooling effect

13.	In vi	scous	flow, the	velocity	distrib	ution across th	e section of a pipe is			
	(A)	Cub	ic law			91	Parabolic only			
Ĭ	(C)	Tria	ngle			(D)	Rectangle			
					~	C. Atamiana	a force of the fluid is known as			
14.	The				Howing		s force of the fluid is known as			
	(A)	Web	er's num	ber		(B)	Froude's number			
- '	(C)	Eule	er's num	ber			Reynold's number			
15.			t I (Phen	omena)	with Li	st II (Causes) a	and select correct answer using codes given			
	belo	w:								
		List l	(Phenor	mena)		List II (Caus				
	(a)	Shoc	k wave		1.	Surface tens				
	(b)	Flow separation			2. Vapour pressure					
	(c)	Capi	llary rise	è	3. Compressibility					
	(d)	Cavi	tation		4.	Adverse pres	ssure gradient			
		(a)	(b)	(c)	(d)	,				
	W	3	4	1	2					
	(B)	4	3	1	2					
	(C)	3	4	2	1					
	(D)	1	2	3	4					
16.	For	numn	ing visco	us oil. w	hich pu	mp will be use	d .			
10.	(A)			ng pump		(B)	Centrifugal pump			
	504		ew pumj			(D)	Cope pump			
17.	A s	ingle a	cting rec	pump is	ng pum 60 rpm	p has a plunger and it deliver	r of diameter 250 mm and stroke of 350 mm s 16.5 litres/sec. Find the slip of the pump.			
	45	4.0				(B)				

(C)

0.714%

(D)

100%

18.	The	wavelength for maximum emissive	power is	given by the law
	(A)	Kirchhoff's law	(B)	Steafan-Boltzmaan law
	(C)	Fourier's law	Di	Wien's law
		4		
19.	The	temperature variation with time, in	the lum	ped parameter model is
	SAY	Exponential	(B)	Sinusoidal
	(C)	Cubic	(D)	Linear
20.	Mat	erials which are employed for electro	des in th	ermo-electric generators are of
	(A)	Insulators	D	Semi-conductor
	(C)	Metals	(D)	Conductors
21.	Fran	ncis, Kaplan and Propeller turbines fa	all under	the category of
	(A)	Impulse turbine	an unuci	the category of
	0	Reaction turbine		
	(C)	Mixed (impulse and reaction) turbi	ine	
	(D)	Axial flow		
22.	Sune	er heating of steam is desirable for		
	(A)	Increasing the efficiency of rankine		
	(B)	Reducing initial condensation losse		
	(C)			- C t 1
	D	Avoiding too high moisture in the l All the above	ast stage	e of turbine
23.	Pulve	erised fuel is used for		
4	(A)	Saving fuel	001	Better burning
	(C)	Obtaining more heat	(D)	None of the above
				¥.
24.	A nu	clear unit becoming critical means		
	(A)	It is generating power to rated capa	acity	
	(B)	It is capable of generating much mo	ore than	rated capacity
	(C)	There is danger of nuclear spread		
	PI	It generates no heat		

- 25. What is the expression for the crippling load for a column of length 'l' with one end fixed and the other end free?
 - (A) $P = 2\pi^2 EI / l^2$

 $P = \pi^2 EI / 4l^2$

(C) $P = 4\pi^2 EI/l^2$

(D) $P = \pi^2 EI / l^2$

Where E – Young's modulus; I = Moment of Inertia

- 26. What is the shape of the shearing stress distribution across a rectangular cross section beam?
 - (A) Triangular
 - Parabolic only
 - (C) Rectangular only
 - (D) A combination of rectangular and parabolic shape
- 27. Strain energy stored in a body of volume V subjected to uniform stress σ is
 - $\frac{\sigma^2}{2E} \times V$

(B) $\frac{\sigma}{2E} \times V$

(C) $\frac{\sigma \times V^2}{2E}$

(D) $\frac{\sigma^2 \times V}{E}$

Where E – Modulus of Elasticity

28. A cantilever of length (l) carries a uniformly distributed load W per unit length over the whole length. The downward deflection at the free end will be

(B) $\frac{Wl^3}{48EI}$

(C) $\frac{5Wl^3}{384EI}$

(D) $\frac{Wl^3}{3EI}$

Where $W = W \times l = \text{Total load}$

29. The property of a material by virtue of which a body returns to its original shape after removal of the load is called

(B) Plasticity

(C) Ductility

(D) Malleability

30. Torque transmitted by friction clutch

is more on the assumption of uniform pressure as compared to uniform wear

- (B) is less on the assumption of uniform pressure as compared to uniform wear
- (C) is same on the assumption of uniform pressure and uniform wear
- (D) is more or less on the assumption of uniform pressure as compared to uniform wear depending upon material
- 31. Train value of gear train is
 - (A) equal to the speed ratio
- (B) half of the speed ratio
- reciprocal of the speed ratio
- (D) double the speed ratio
- 32. A balance mass of value 2/3 m is placed diametrically opposite to the crank at crank radius r. The unbalance force along the line of stroke of a reciprocating engine is
 - (A) $\frac{2}{3}mw^2r\cos\theta$

 $\frac{1}{3}mw^2r\cos\theta$

(C) $\frac{2}{3}mw^2r\sin\theta$

- (D) $\frac{1}{3}mw^2r\sin\theta$
- 33. If the spring mass system with mass m and spring stiffness k is taken to very high altitude, the natural frequency of longitudinal vibrations.
 - (A) increases
 - (B) decreases
 - remains unchanged
 - (D) may increase or decrease depends on climate
- 34. The solution to critically damped free vibration will be of the form
 - (A) $x = A_1 \cos w_d t + A_2 \cos w_d t$
- (B) $x = A_1 \cos w_d t + A_2 \sin w_d t$
- (C) $x = Ae w_n t \sin(w_d t + \phi)$
- $x = (A_1 + A_2 t) e w_n t$

35.	Match	the fe	ollowing
JU.	March	rue r	OTTO AS TITE

List I

- Crossed helical gear (a)
- List II To connect two intersecting shaft at 90 degrees with a
- given speed ratios
- Straight level gear (b)
- To connect non parallel, non intersecting and teeth are 2. curved
- Hypoid gears (c)
- To connect non parallel, non intersecting shaft 3.
- - (a) (b) (c)
- 3 (A)
- 3 2
- 2 1
- A V-belt designated by A-914-50 denotes 36.

a standard belt

an oversize belt (B)

an undersize belt (C)

- a medium size belt (D)
- The form factor in the design of gears dependant on the following factors. 37.

1.

- (1) tooth number
- pressure angle (2)
- (3) module
- size of tooth (4)
- (1), (2) and (3) (A)
- (1) and (3) only (C)

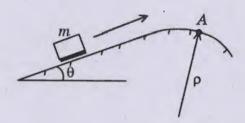
- (1) and (2) only
 - (2), (3) and (4)

Crowning is done on a pulley to 38.

decrease the tendency of slip

- increase the coefficient of friction (B)
- increase the power capacity (C)
- increase the creep (D)

39.	Chip	Equivalent is increased by		
	4	an increase in side cutting edge an	gle of to	ool
	(B)	an increase in nose radius and side		
	(C)	increase the area of cut		
	(D)	increasing the depth of cut		
40.	Find	out the index movement required to		
10.		x plate has 24 holes	пшаг	nexagonal bolt by direct indexing. The rapid
	4	4	(B)	1/4
	(C)	3	(D)	1/3
41.	In C	NC programming, APT stands for,		
	100	Automatically Programmed Tool		
	(B)	Application Programming Tool		
	(C)	Applied Precision Tooling		•
	(D)	Automatically Precision Tooling		
42.	The l	best example for a continuous materia	al hand	ling system is,
	(A)	robots	(B)	automated guided vehicle system
	501	conveyor system	(D)	towline carts
43.	Whic	h one of the following is not a natural	abrasi	ve grinding wheel materials?
	(A)	Sandstone	(B)	Emery
	501	Silicon carbide	(D)	Diamonds
14.	In El	ectron Beam Machining, the melting	and var	ourization of material is done by
	4	Kinetic energy of the electron		
	(B)	Potential energy of the electron		2 -
	(C)	External heat source		
	(D)	Focusing coils		


45.		applying Vogel's approximation mization problem, row and column		(Transportation Problem) to a profit are determined by								
	(A) Finding the smallest unit cost in each row or column											
	(B) Finding the sum of the unit costs in each row or column											
	(C)	Finding the difference between the	ne two low	est unit costs in each row and column								
	0	Finding the difference between the	ne two higl	hest unit costs in each row and column								
14	T 0:		ratio colu	mn happen to be negative then the solution								
46.			(P)	Unbounded								
	(A)	Infeasible	(D)	Multiple Optimum								
	(C)	Optimal	, (D)	Multiple Optimum								
47.	A ma	ajor assumption of stability of dem	and is imp	ortant for justifying which of the following								
		it type?										
	(A)	Fixed - Position layout	83	Product layout								
	(C)	Process layout	(D)	Computerized layout								
48.	If EOQ is within the range of the lowest discounted rate offered, then											
	(A)	Accept the discount offer and ord										
	(B)	Reject the discount offer										
	(C)	Consider the total costs of the ra	nges of dis	scount before taking the decision								
	201	Accept the discount offer and ord	4									
		1										
49.	A tir	ne study was conducted on a job u	sing stopw	atch. Average observed time of the job was								
10.	10 n	ninutes. The average rating was	estimated	to be 110%. The allowances for personal								
		ls, rest etc amount to 10%. The sta		The state of the s								
	(A)	10.0 minutes	(B)	12.0 minutes								
	(C)	10.1 minutes	101	12.1 minutes								

- 50. Consider the following statement:
 - Assertion (A): In cantilever trusses there is no necessity to find support reaction for solving it
 - Reason (R): Cantilevers have moment as a reaction
 - (A) Both (A) and (R) are correct and (R) is the correct explanation of (A)
 - Both (A) and (R) are correct and (R) is not the correct explanation of (A)
 - (C) (A) is correct and (R) is incorrect
 - (D) (A) is incorrect and (R) is correct
- 51. The impact in which the two bodies join together after collision is called as
 - (A) Central impact

Plastic impact

(C) Elastic impact

- (D) Oblique impact
- 52. The maximum speed of the sliding block to pass point A with radius of curvature ρ , without slipping is

$$V_{\text{max}} = \sqrt{g \rho}$$

(B)
$$V_{\text{max}} = \sqrt{g\rho \tan \theta}$$

(C)
$$V_{\text{max}} = mg/\rho \theta$$

- (D) $V_{\text{max}} = mg/\rho \tan \theta$
- 53. The importance of D'Alembert principle is
 - (A) convert static problem into dynamic problem convert dynamic problem into static problem
 - (C) relates centrifugal and centripetal force
 - (D) relates impulse and momentum
- 54. The mass moment of inertia of a sphere about any of its centroidal axes is given by

(B)
$$\frac{2}{3} mr^2$$

(C)
$$\frac{4}{5} mr^2$$

(D)
$$\frac{4}{3}mr^2$$

	D'	mixt	ure stre	ngth for	hydroc	arbon fuels is a	bout 10% rich				
	(C)	mixt	ure is m	ade lear	ner (or)	further enriche	ed .				
	(D)	it rel	eases le	ss thern	nal ener	rgy					
				1							
56.	Refo	rming i	in fuels	for IC er	ngines i	s a term used t	o convert				
	(A)	high antiknock quality gasoline into low antiknock gasoline quality									
	(B)			in produ							
	10	low a	ntiknoc	k qualit	y gasol	ine into high ar	ntiknock quality				
	(D)						m a aromatic cor	npound			
	,										
57.	The	instrur	nent use	ed to exa	mine t	he spark timin	g is		,		
	(A)		ous flow			(B)	Rotameter				
	(0)		oscope			(D)	Air compressor				
			₽								
						Tint II (Mate)	siala) following:				
58.	Mat		I (IC en	gine pai	rts) With	List II (Mate	rials) following:				
	(a)	List I Pistor	1		1.	Cast iron			•		
	(b)	Valve			2.	Alloy steel					
	(c)		kshaft		3.	Special alloy	steel'				
	(d)		n rings		4. Cast steel						
		(a)	(b)	(c)	(d)	* *					
	14	4	3	2	1						
	(B)	1	2	3	4						
	(C)	4	2	3	1						
	(D)	1	3	2	4						
					1						
59.	In a	jet eng	gine, the	air-fuel	ratio is						
	(A)	30:	1			(B)	40:1				
	(C)	50:	1				60:1		•		
60.	Tra	nsport ts of air	of fluids	in cher	nical pr re exan	rocess plants, A	ir conditioning s	ystems, flow	process in gas		
	(A)	Ray	leigh flo	w ·		(5)	Fanno flow				
	(C)		bulent fl			(D)	Isothermal flo	w			
									CETA/16		

The maximum flame speed in CI engines occurs when

ignition lag occurs

55.

(A)

61.	In an ideal vapour compression refrigeration cycle, the specific enthalpy of refrigerant (in kJ/kg) at the following states are given as:											
	Inle	et of co	ondenser	: 283				•				
	Exi	it of co	ndenser	: 116								
	Exi	it of ev	aporato	r : 232, T	he COP	of this	cycle is					
1	100	2.2	7				(B)	2.75				
	(C)	3.2	7				(D)	3.75				
62.	The	Airc	raft refr	rigeratio	n syste	m hav	ing high	supersonic speeds, the system used for				
	4	sim	ple air o	cooling		24	(B)	simple evaporative system				
	(C)	boo	tstrap s	ystem			(D)	bootstrap evaporative system				
63.	Cal	culate	the pres	sure du	e to a co	lumn o	f 0.2 m o	fwater				
	(A)	196	32 N/m ²				(B)	2962 N/m ²				
	(C)	962	2 N/m ²			-	(D)	1000 N/m ²				
64.	4	Pre	ssure he	ad and	datum h	ead	efined as	the sum of				
	(B)		ssure he					002				
	(C)						netic hea	d				
	(D)	Dat	um head	d and ki	netic hea	ad						
65.	Mat	ch Lis	t I (Qua	ntity to 1	neasure) with	List II (M	Ieasuring Devices) :				
		List	I (Quant	tity to m	easure)		List II	(Measuring Devices)				
	(a)	Diffe	rential p	ressure		1.	Viscon	neter .				
	(b)	Abso	lute pre	ssure		2.	Manon					
	(c)	Air velocity 3.										
	(d)	Visco	osity of f	luid		4.	Barom	eter				
		(a)	(b)	(c)	(d)							
	(A)	4	2	3	1							
	0	2 .	4	3	1							
	(C)	2	4	1	3			•				
	(D)	1	2	3	4							

- 66. If at the inlet of the turbine, water possesses kinetic energy as well as pressure energy, the turbine is known as
 - (A) Impulse turbine

(B) Reaction turbine

(C) Axial flow turbine

(P) Both (B) and (C)

'&' does not depend on wavelength

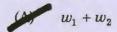
Intensity same in all direction

Mirror like reflection

Zero reflectivity

- 67. Overall efficiency of a centrifugal pump is given by
 - Manometric efficiency ×Mechanical efficiency
 - (B) Hydraulic efficiency × Mechanical efficiency
 - (C) Manometric efficiency × Hydraulic efficiency
 - (D) Mechanical efficiency × Thermal efficiency
- 68. Match the List I with List II and answer the code below:
 - List I Black body 1. (a) 2. Gray body (b) Specular 3. (c) Diffuse 4. (d) (a) (b) (c) (d) (A) · 2 1 3 3 1 2
- 69. Milk spills over when it is boiled in an open vessel. The boiling of milk at this instant is referred to as
 - (A) Interface evaporation
 - By Sub-cooled boiling
 - (C) Film boiling
 - (D) Saturated nucleate boiling
- 70. Addition to fin to the surface increases the heat transfer, if $\sqrt{\frac{hA}{kP}}$ is,
 - (A) Equal to one
 - (B) Greater than one
 - Less than one
 - (D) Greater than one but less than two

71.	The	results of proportional mode of control	is		
	(A)	eliminate steady state error			•
	97	stable responses			
	(C)	high responses			
	(D)	eliminate overshoot			
72.	In ar	n automatic control system for control	lling th	ne speed of the shaft -	is the
	corre	ection unit.			•
٠	(A)	PID controller	(B)	Microprocessor	
	500	Motor	(D)	Tachogenerator	
73.	In H	all effect sensor, the Hall voltage is		4	
	14	proportional to the magnetic flux de	nsity a	nd current .	
	(B)	proportional to the magnetic flux on	ly		
	(C)	inversely proportional to the curren	t		
	(D)	proportional to the resistance and co	urrent		
74.	The	resistance of conventional metal-oxid	e therr	nistors ————	with an increase in
	temp	perature.			,
	(A)	increases	91	decreases	
	(C)	remains constant	(D)	increases non linearl	у
75.		nsor is having an accuracy of +5% of or range is 0 to 200° C	full rai	nge output. What is th	e true reading if the
	(A)	plus 5° C of the true reading			-
	(B)	minus 5° C of the true reading			
	(0)	plus 10° C of the true reading			
	(D)	plus 20° C of the true reading			


16

GFTA/16

- The relation between the no. of links (l) and the number of binary joints (j) for a kinematic 76. chain having constrained motion is given by $j = \frac{3}{2}l - 2$. If the left hand side of this equation
 - completely constrained chain (A)
 - incompletely constrained chain (B)

is greater than right hand side, then the chain is

- locked chain
- quadric cycle chain (D)
- Two kinematic links 1 and 2 of mechanism have absolute angular velocity w_1 (clockwise) and 77. w_2 (anti-clockwise) respectively. The angular velocity of link 1 relative to link 2 is

(C)
$$\frac{w_1 - w_2}{2}$$

- (D) $\frac{w_1 + w_2}{w_1 w_2}$
- Roller followers are not used in automobiles because of 78.
 - (A) Jumping at lower speed
- Rolling away from path (B)
- Failure of Roller pin points
- (D) Less friction in rollers
- If the velocity of an entire link is marked as a point in velocity polygon, then 79.
 - (A) The link is rotating

The link is small

The link is translating

The link is not rigid (D)

- Match the following: 80.
 - Pantograph (a)

- Slider Crank 1.
- Whitworth mechanism (b)
- 2. 4-bar
- Scotch yoke mechanism
- 3. Straight line
- Peaucellier mechanism
- Double slider 4.

- (a)
- (b) 1
- (c)
- (d) 2

3 3

3

- 1

- 2
- 1

- 3
- 4
- 1
 - 2

81.		nt used to connect two co-axial ro compressive force.	ds which a	re subjected to either axial tensile i	orce or
	(A)	knuckle joint	91	cotter joint	
	(C)	universal joint	(D)	flange coupling	
				4	
82.	The	coupling, which is used to connect	which are	perfectly aligned	
٠.	(A)	universal coupling	(B)	old ham's coupling	
	(0)	flange coupling	. (D)	bushed pin type coupling	
83.	Whic	ch of the following statement is wr	ong for a co	onnecting rod?	
	(A)	A connecting rod will be equally	strong in b	suckling about X axis, if $I_{XX} = 4I_{YY}$	
	(B)	If $I_{XX} > 4I_{YY}$, the buckling will	occur abou	t Y axis	
	(C)	If $I_{\rm XX} < 4I_{\rm YY}$, the buckling will	occur abou	t X - axis	
	01	The most suitable section for con	nnecting ro	d is 'T' section	
84.	In h	elical compression spring, the e	xternal for	ce acts along the axis of spring	induces
4	_	in the spring wire.			
	(A)	compressive stress	(B)	tensile stress	٠
	50	torsional shear stress	(D)	shear stress	•
85.	The	long bearing have the advantage o	of	compared to short bearing.	
	(A)	More heat dissipation	,	•	
	91	More load carrying capacity			
	(C)	More load carrying capacity wit	h more hea	t dissipation	
	(D)	Less load carrying capacity with	n more heat	dissipation	
		-		a.	
GFT	A/16		18	/	•

How can shock absorbing capacity of a belt be increased? 86. By tightening it properly (A) By increasing shank diameter (B) (C) By grinding the shank By making the shank diameter equal to the core diameter of thread Formed cutters an 87. convex milling cutter and concave milling cutter taper shank end mill cutter and straight shank end mill (B) plain metal slitting saw and staggered teeth metal slitting saw (C) tap and reamer cutter (D) In slotting machine, the following mechanism have been used to remove the metal during 88. downward stroke Tumbler gear mechanism (or) Back gear mechanism (A) Ball gear mechanism (or) Back gear mechanism (B) Rotary indexing mechanism (C) Whitworth quick return mechanism (or) variable speed reversible motor drive mechanism (or) Hydraulic drive mechanism The rake angle in a twist drill 89. varies from minimum near the dead centre to a maximum value at the periphery is maximum at the dead centre and zero at the periphery (B) is constant at every point of the cutting edge (C) · is a function of the size of the chisel edge (D) The knee tool holders are useful for 90. single operation alone (A) simultaneous turning and boring or turning and drilling operations

grinding operation

broaching operation

(C)

(D)

91.	Equity theory	of motivation focuses on
	1 - 3	or moral addon formore off

The fact that people are influenced by the expected results of their actions

- (B) People's expectations of the different outcomes for a given action
- (C) The motivational force involved in a person's actions at work
- (D) People's perception of how they should perform in a given situation at work

92. Which statement is not an advantage in a formal organisation?

- (A) Well defined authority, responsibility and accountability
- (B) Proper standardisation of work is practicable
- (C) Rules are considered religiously
- Duplication of work is practiced

93. Identify the information system that gives the output in the form of summary and exception reports that are useful to the managers

Management information system

- (B) Office automation system
- (C) Transaction processing system
- (D) Executive support system

94. Which is a flexible budget?

- (A) A budget that shows a detailed schedule of expected sales for the budget period
- (B) A budget that does not change through the budget period
- A budget that adjusts for changes in the volume of activity
- (D) A budget that does not change as volume changes

95. Which of the following statement related to productivity is not correct?

- (A) Achieving more output with same level of inputs
- (B) Achieving same level of output with reduced inputs
- (C) Proportionate increase in output is more than proportionate increase in inputs
- Proportionate increase in output is less than proportionate increase in inputs .

96.	The	square of the standard deviation is al	so called	l					
•	(A)	Skewness	93	Variance					
	(C)	Medium	(D)	Mode					
97.	Whic	ch one of the following is not the surfa	ce char	acteristic?					
	(A)	Profile							
	(B)	Lay							
•	10	Contacting envelope							
	(D)	Flaws							
98.	The method of inspection by variables gives a record of								
	(A)	No. of parts inspected							
	0	Actual measurement of the product							
	(C)	No. of defective parts inspected							
	(D)	Approximate measurement of the p	roduct						
99.	Expr	Expressing a dimension $45.2^{\pm0.02}$ mm is the case of							
	14	Bilateral tolerance	•						
	(B)	Unilateral tolerance							
	(C)	Limiting dimensions							
	(D)	Unlimiting dimensions							
100.	The	two slip gauges in precision measuren	nent are	joined by					
	(A)	Assembling							
	(B)	Slipping							
	100	Wringing							
	(D)	Sliding							

	(C)	Aluminium	
	(D)	Hardened and ground steel	
02.	Mode	ern intake manifolds are made by	
02.	(A)	PVC	(B) Backlite
	(C)	Cast iron	Dupont zytel
	(0)	Cast Iron	Dupont zytei
03.	Who	n the exhaust manifold is red hot	.,
	(A)	Engine works on low load and	
	(P)	Engine works with high load as	
	(C)	Engine works with low load of	
	(D)	Engine works with high load of	
04.	High	performance over hear cam engi	ines have
	(A)	one cam per head	
	0	two cam per head	
	(C)	three cam per head	
	(D)	four cam per head	
		•	
05.	Two	stroke cycle engine adapted with	a
	(A)	uni flow scavenging	*
	(B)	back flow scavenging	
	50	cross flow scavenging	
	(D)	double way flow scavenging	
06.	Calo	rific value of Bio gas is	
	4	4,250 Kcal/Kg	(B) 5,500 Kcal/Kg
	(C)	5,875 Kcal/Kg	(D) 14,000 Kcal/Kg
FT	A/16		22

101. Gudgon pins are made of

Cast iron

Same material of the piston

107.	The is ab		g into	the cylinder of a conventional diesel engine
•	(A)	1000 m/s	(B)	2000 m/s
	50	100 m/s	(D)	50 m/s
108.	Solid	l injection in I.C. engines refers to the	injectio	on of
	u	Liquid fuel only	(B)	Liquid fuel and air
	(C)	Solid fuel	(D)	Solid fuel and air
-				
109.	The	peak cycle temperature of the gas of a	diesel	engine may reach upto
	(A)	3500 K	0	2500 K
*=	(C)	4500 K	(D)	1500 K
. 110	The s	diator anding tubes are gaparally ma	do of	
110.		radiator coding tubes are generally ma	(B)	plastic
	(A)	rubber	(D)	copper
	(C)	brass		copper
111.	The	heat given to the coding medium in IC	engine	es is about
	(A)	60 – 70 %	(B)	. 50 – 60 %
	(C)	40 – 50 %	9	30 – 40 %
112.	The	principle used in diesel engine codant j	oump i	is
	(A)	positive displacement	(B)	constant volume
	(C)	constant pressure	94	centrifugal
113.	Engi	ne over heating may result due to the		
	(A)	radiator pressure cap stuck closed		
	. /			

(B)

(D)

thermostat stuck open

excess codant in the system

broken fan belt

114.	The ad	justable	wheel	alignment	angles	are
------	--------	----------	-------	-----------	--------	-----

- (A) Steering axis inclination, caster and camber
- (B) Turning radius, set back and thrust angle
- (C) Toe, suspension height and included angle
- Caster, camber and toe

115. Which of the following is not a common spring type?

(A) Coil spring

Composite spring

(C) Leaf spring

(D) Torsion bar

116. In gas filled shock absorber the gas used is

(A) Atmospheric air

Nitrogen

(C) Oxygen

(D) Hydrogen

117. Which of the one is not the part of unspring weight?

(A) drive axle

(B) axle shaft

(C) wheel

(P) engine

118. Which of the following is not a battery rating?

(A) 20 - h rate

(B) 25 - A rate

(C) Cold rate

(P) 47-A rate

119. The voltage 'V' between the cell terminals during charge shall be given by the equation

(A) V = e - rc

V = e + rc

(C) $V = e \times rc$

(D) $V = e + \frac{r}{c}$

120. What is the purpose of vent plug in battery?

- (A) provide grounding
- pouring electrolyte and water
- (C) increase internal resistance
- (D) increase specific gravity of battery

121.	Carb	urettors should be adjusted cor	rectly to allo	w engine to idle smoothly at	
	rpm.				
	(A)	200 to 300 rpm	91	500 to 550 rpm	
	(C)	1000 to 2000 rpm	(D)	1500 to 1600 rpm	
	*				
122.	Gene	rally the running temperature of	of the engine	lies between	
	(A)	120 – 140° C	(B)	40 – 50° C	
	(C)	200 – 300° C	91	75 – 90° C	
123.	Whic	h is not a reason for engine star	ts but stops i	mmediately?	
	(A)	Faulty fuel pump	(B)	Choked fuel filter	
	101	Frozen engine oil	(D)	Choked silencer	
124.	Pisto	n resizing is done by			
	(A)	Boring	(B)	Trimming	
	101	Knurling	(D)	Grinding	
			•		
125.	Exce	ssive oils in engine leads to		+	
	(A).	Oiling up	200	Dark white smoke	
	(C)	Blue smoke	. (D)	Black smoke	
		*			
126.	Clute	ch facings are usually attached t	o the plate by	7	
	(A)	Steel screws	(B)	Steel rivets .	
	(C)	Aluminium screws	91	Brass rivets	
127.	Frict	ional wear of hydraulically oper	ated clutch is		
	(A)	minimum	+		
-	(B)	maximum			
		maximum at higher speeds an	d minimum	at lower speeds	
	(C)	maximum at migner speeds an	a minimum c	oranor abasses	

nil

Iran	ister box is equipped with		
(A)	Front wheel drive	(B)	Rear wheel drive
101	Four wheel drive	(D)	Hotch-Kiss drive
Mech	nanical efficiency is very poor in		
(A)	Epicyclic gear box		·
(B)	Constant mesh gear box		
(C)	Synchromesh gear box	•	
01	Sliding mesh gear box	,	•
The i	function of a slip joint is to allow the p	ropelle	r shaft to
4	change length		
(B)	bend sideways		
(C)	change inclination		
(D)	transfer torque at any angle		
			4
Univ	ersal joints are efficient when the ang	gle of in	clination between two shafts is
49	less than 18°	(B)	between 18° to 25°
(C)	between 25° to 40°	(D)	more than 40°
Limit	ted slip differential is employed on		
(A)	front-wheel drive vehicles		,
DY	rear-wheel drive vehicles	٠	
(C)	four-wheel drive vehicles		
(D)	all wheel drive vehicles		
		F	
The I	Hooke's joint consists of		
(A)	one fork	21	two forks
(C)	three forks	(D)	four forks
	(A) (B) (C) (The final (A) (C) (D) (C) (Limit (A) (C) (D) (C) (D) (A)	Mechanical efficiency is very poor in (A) Epicyclic gear box (B) Constant mesh gear box (C) Synchromesh gear box Sliding mesh gear box The function of a slip joint is to allow the post of the post of the function of a slip joint is to allow the post of the post of the function of a slip joint is to allow the post of the post of the function of the post of the function of the post of the function of the post of the post of the function of the function of the post of the function of the post of the function of the function of the post of the function of the post of the function of the post of the function of the fu	(A) Front wheel drive (B) Four wheel drive (D) Mechanical efficiency is very poor in (A) Epicyclic gear box (B) Constant mesh gear box (C) Synchromesh gear box Sliding mesh gear box The function of a slip joint is to allow the propelle change length (B) bend sideways (C) change inclination (D) transfer torque at any angle Universal joints are efficient when the angle of in less than 18° (C) between 25° to 40° (D) Limited slip differential is employed on (A) front-wheel drive vehicles (C) four-wheel drive vehicles (C) four-wheel drive vehicles (D) all wheel drive vehicles (The Hooke's joint consists of (A) one fork

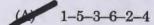
134.	Mate	ch the	following	g:		-				
	(a)	Camb	er angle		1.	Inward tilt o	of the steering ront	axis from	vertical	wher
	(b)	Caste	r angle		2.	Tilt of the ste vehicle	ering axis towar	rd the front	(or) rear	of the
	(c)	Steer	ing axis	inclinati	on 3.	Camber angle	plus steering a	xis inclinati	on	
	(d)	Includ	led angl	e	4.	Inward (or) of viewed from f	outward tilt of	wheel from	vertical	wher
		(a)	(b)	(c)	(d)					
	(1)	4	2	1	3					
	(B)	4	3	2	1	•				
	(C)	1	4	2	3					
	(D)	1	2	3	4	+:.				4
135.	The	term s	wept are	ea in bra	kes refe	ers to		-		
	(A)	cont	act area	between	the tir	e and the road		-		
	0	rotor	and dr	um area	rubbed	by the brake li	ning			
	(C)	pisto	n area i	n maste	r cylind	er				
	(D)	pisto	n area i	n wheel	cylinde	r		4		
136.	Whi	ch of th	ne follow	ing is th	e heart	of the hydraul	ic braking system	m?		
	(A)		el cylind			0	master cylinde			
	(C)	push	100			(D)	connecting pip	es		
	(9)									
137.	Whi	ich of th	ne follow	ing is no	t a par	t of drum brake	es? ·		٨	
	4	Cali	per			(B)	Brake shoes			
	(C)	Retr	actor sp	ring		(D)	Expander		k.	,
100	Dua	les sour	eal is du	o to	٠				,	
138.					noo elia	htly twisted				
	I.							•		
	II.					shoe pads				
	III.			bearing						
	IV.		rloaded			(D)	II III J IV/ -	mly		
	CA.	I, II	and III	only		(B)	II, III and IV	шу		
			and IV			(D)	II and IV only			

139.	Whi	ch is / are correct with respect to l	bead wires	of a tire?	
	1.	Bead wire will place the tire fir	mly on the	wheel	1
	2.	Bead wire help transmit starting	ng and stop	ping torque from the wheel to	the tire
	(A)	1 only	(B)	2 only	
	99	Both 1 and 2	(D)	Neither 1 nor 2	,
140.	Iner	tia type drives are commonly emp	oloyed in		
	(A)	light transport vehicles	98	light passenger vehicles	
	(C)	heavy transport vehicles	(D)	electrically operated vehicles	3
141.	In ar	alternator, the magnetic field is	produced i	n the	
	45	rotor	(B)	stator	
•	(C)	carbon brushes	(D)	slip ring	
142.	The	regulated voltage output of the al	ternator on	a 12-V system should be	
	(A)	exactly 12 V	(B)	10.9 V	
	(C)	11.9 V	91	approximately 14 V	
143.	-	are much smaller,	lighter in	weight and produce more	current than
	(A)	Generators, alternators	91	Alternators, generators	
	(C)	Generators, induction motors	(D)	Alternators, dynamometer	
144.	Auto	motive starting motors are			
	(A)	Shunt wound motor	0	Series wound motor	
	(C)	A.C Induction motor	. (D)	Permanent magnet motor	
145.	The e	electrolyte for a full charged lead :	acid batter	y has a specific gravity value o	f
	(A)	1.000	(D)	1.265	
	(C)	1.100	(D)	1.500	
GFT	A/16		28		

146.	Free	pedal play in car clutches is about		
•	(A)	6 mm	91	30 mm
	(C)	60 mm	(D)	100 mm
		*		
147.	The s	spray of water from a car washer is	at a press	sure of about
	w	3 Мра	(B)	30 Mpa
	(C)	3 Кра	(D)	30 Kpa
148.	EGR	system is employed for controlling	emission	of
	(A)	HC	(B)	CO
	(C)	NO .	ON	HC and CO
149.	Maxi	imum allowable hydro carbons in th	e car emi	ssion are approximately
	(A)	10 ppm	85	100 ppm
	(C)	1000 ppm	(D)	5000 ppm
150.			ndards an	d regulations for fitment of Child Restrain
	Syste	em (R44) got implemented.		
	(A)	2004	(B)	2005
	(C)	2006	(C)	2007
	** 1		at aabada	ıle contains — number o
151.		er the Motor vehicle act, the fir datory traffic signs	st scheut	ne contains
	(A)	32	(B)	34
	50	36	(D)	38
152.			he licence	e, already forty years age, is effective for
		od of years.	(B)	4 years
	(A)	3 years		6 years
		5 years	(D)	O years

					1.	
153.	Too	rich mixture for a SI engine means air	r : fuel r	atio of about		
	(A)	1:17	(B)	1:15		4
	(C)	1:14	99	1:10		
154.	The	multi-purpose vehicle formerly (1983)	known	as ————,	, introduced by C	hrysler
	(A)	Animals carrier	(B)	Goods carrier		
	50	People carrier	(D)	Private carrier		
	14."					
155.	A six	cylinder flat engine does not have				
	(A)	Unbalanced primary force				
	(B)	Unbalanced secondary force				
	101	Unbalanced couples				
	(D)	Unbalanced torsions				

Choose the most common firing order for a six cylinder in line engines


Secondary Inertia forces in all engines caused by

Eccentric structure of crank shaft

Rotation of crank shaft

Angularity of connecting rod

Rotation of connecting rod

(B) 1-6-3-5-2-4

(C) 1-3-6-2-4-5

(D) 1-4-3-2-6-5

- 158. Intake valves are made of
 - (A) Non magnetic material

Magnetic material

- (C) Piezo electric material
- (D) Thermoset plastic materials

156.

(A)

(B)

(D)

159.	S.U.	Carburetor is of				
	(A)	Constant choke type				
	(B)	Constant volume type		. ,		
	500	Constant vaccum type				
	(D)	Constant discharge type	*			
160.	CET	ANE number of diesel normally	available in	market is in the	range	
	45	45–50	(B)	60–65		
	(C)	75–80	(D)	90–100		
161.	In m	ultiple plunger Jerk pump sy	stom a tim	ad injection (no	tmal\t tl	
		sure is	stem, a tim	ed injection (pe	troi) system, th	e injection
	(A)	50 to 100 bar	(B)	100 to 200 bar		*
	(0)	100 to 300 bar	(D)	200 to 300 bar		
162.	Drivi	ng thrust and torque reaction is	taken in a I	Totch kiss drive l	ру	
	M	Road springs	(B)	Radius rods		
	(C)	Swinging shackle	(D)	Propeller shaft		-
163.	The t	ype of injector used in CRDI sys	tems is			
	(A)	Pintle injectors				
	0	Electro hydraulic injectors		4.		
	(C)	Electronic unit injectors				
	(D)	Poppet injectors				
.64.	The N	ozzle diameter of a typical diese	el engines fu	el injector will ra	nge from	
	(A)	5 to 7 mm	(B)	1 to 5 mm	,	
	(C)	0.02 to 0.1 mm	P	0.2 to 1 mm		

165.	Multigrade lubricating oils of I.C. engines are specified as									
	(A)	SAE 4	10 .				9	SAE 10 W 40		
	(C)	SAE V	W 40				(D)	SAE 10 W 30		
166.	The l	owest t	emper	ature a	t which	ch the	e oil burns con	ntinuously is called as		
	(A)	flash	point				01	fire point		
	(C)	self ig	nition	tempe	rature	2	(D)	cloud point		
							4			
167.	The maximum pressure in the lubricating system is controlled by									
	(A)	oil pu					(B)	oil filter		
	101	valve	relief				(D)	supply voltage		
100	That are	4ha	+ 00011	a hotur	oon th	a lav	ers of oil film	is called as		
168.			dary fr		cen u	ic lay	(B)	dry friction		
	(A) (C)		y fricti				(D)	viscous friction	,	
	(0)	greas	y IIIcu	OII				•		
169.	Spectrographic testing is used to identify the									
	Metalic and organic contaminants in the oil									
	(B) Emission components in the exhaust									
	(C) Energy content of any fuel (D) Fatty acid content of any fuel									
	(D)	Fatty	y acid c	ontent	of an	y fuel				
170.	Mat	ch the	followi	ng:						
		Туре					Coil end sha			
	(a)	Taper				1.		nuous spiral	oil	
	(b)					2.	Last coil is bent to be square with the co End of wire is flattened			
	(c) (d)	Pigta				4.		wound to a smaller diamete	r	
	(u)	(a)	(b)	(c)	(d)		-			
	(A)	. 4	3	2	1					
	(B)	1	2	3	4	+		•		
	(C)	2	3	4	1					
	000	- 0	4	. 0	4					

171.	Delce	o eye is used to							
	(A)	shows the specific gravity							
	(B)	shows the voltage of the cell							
	(C)	connect two plates							
	201	indicate level of electrolyte							
172.	The	range of specific gravity of lead acid b	attam	when fully showed					
112.		1.25 - 1.50		1.2 – 1.23					
	(A)	1.26 – 1.28	(B)						
		1.20 – 1.28	(D)	1.17 – 1.20					
. 1									
173.	The o	The output voltage produced by the secondary winding of ignition coils varies between							
	4	10,000 to 20,000 volts							
	(B)	25,000 to 27,000 volts							
	(C)	25,000 to 30,000 volts		2					
	(D)	More than 30,000 volts		*					
174.	While setting the spark plug electrode gap ———— gauge is used.								
	-	·flat feeler	(B)	round wire					
	(C)	round plug	(D)	round feeler					
175.	Insulating material in spark plug is made up of								
	(A)	Teflon	(B)	Wood					
	19	Porcelain	(D)	Thermosetting plastic					
176.	When	the cylinder bore is increased, then	the igni	ition timing will be					
		(A) less ignition advance is needed							
	(B)								
	100	more ignition advance is needed							
	(D)	standard timing is used							
	(-)								
177.	When		is incr	reased, what happens to the break down					
	(A)	Decreases	D	Increases					
	· (C)	No change	(D)	Decreases and then increases					

178.	Clutc	th free pedal play helps to						
	(A)	maximize the mechanical advantage	. +					
	(B)	minimize the chatter						
	5	avoid a rapid wear of thrust bearing						
	(D)	disengage easily						
179.	The f	ree wheeling mechanism contains						
	(A)	a planetary gear	(B)	a propeller shaft				
	مرود	an over running clutch	(D)	a torque tube drive				
180.	Cush	ioning springs in clutch plate reduces		.*				
	(A)	vehicle speed	(B)	torsional vibrations				
	100	jerky starts	(D)	friction				
181.	The a	air resistance to a car at 20 kmph is ' R '	. The	air resistance at 40 kmph will be				
	(A)	R	(B)	2R				
	(C)	3 <i>R</i>	5	4 <i>R</i>				
182.	Over	drive is placed						
+	(A)	before gear box		• -				
	DY	in between propeller shaft and gear b	oox					
	(C)	after propeller shaft						
	(D)	in between engine and gear box		•				
183.	Inter	locking mechanism ensures that						
	only one gear can be engaged at a time							
	(B) only two gears can be engaged at a time							
	(C)	only three gears can be engaged at a	time	×.				
	(D)	noiseless running of gear box						

34

GFTA/16

184.	Which	h of the following statement is false ab	out H	otch-kiss drive?					
	I.	It has 2 universal joints							
	II.	It has a sliding joint							
	III.	III. Leaf springs takes the driving thrust and torque reaction							
	IV.	Leaf spring is held between two shack	kles						
	(A)	I, III only	(B)	II, III only					
	(C)	Both I and II	01	IV only					
185.	In cer	ntre point steering, the scrub radius is							
	(A)	positive	(B)	negative					
	100	zero	(D)	infinite					
	*								
186.	Acker	mann steering mechanism consists of							
	(A)	sliding pairs only							
	25	turning pairs only							
	(C)	both (A) and (B)							
	(D)	neither (A) nor (B)							
187.	Perfe	ct steering is achieved during a turn w	hen a	ll the wheels have					
	(A)	sliding motion							
	0	rolling motion							
	(C)	partly sliding and partly rolling motion	on						
	(D)	lateral slip							
188.		riable ratio rack and pinion steering sy circle radius is called as	stem,	the ratio of steering wheel radius to pinion					
	(A)	Gear ratio							
	2	Movement ratio							
	(C)	Angle ratio							
	(D)	Power ratio							

89.	The function of master cylinder is									
	to increase pressure equally in all cylinders									
	(B)	B) to increase pressure unequally in all cylinders								
	(C)	to decrease pressure unequally in all cylinders								
	(D) to decrease power equally in all cylinders									
90.	Which of the following statement is / are correct?									
	I.	I. The width of the wheel should equal to the width of the tire tread								
	II.	The diameter of the wheel should be equal to the tire diameter.								
	(A)	I only		01	II only					
	(C)	Both I and II		(D)	Neither I nor II					
91.	The starting torque of starting motors for cars vary between									
	(A)	100 to 150 N.m		(B)	60 to 90 N.m					
	(2)	10 to 30 N.m		(D)	1 to 9 N.m.					
92.	A re	d ship in the tyre tube	indicat	es that the tyre	is made up of					
4	(A)	Butyl		01	GR-S					
	(C)	Natural rubber		(D)	Poly urethane					
93.	If the tyre is designated as 185/60 R 14 82 H, then									
		Marking	,	Meaning						
	(a)	185	1.	Load index						
	(b)	60	2.	Section width	in mm					

(b) 60 (c) 14 3. (d) 82 (b) (a) (c) (d) (A) 3 . 1 4 2 (B) 3 2 1 4 (C) 2 1 3 . 3 1

Aspect ratio

Rim diameter in inches

194.	For	For identification, the colour of tail light in a car is							
	(A)	white	SET	red ·					
	(C)	green	(D)	yellow					
195.		inous flux is defined as the amount	of light p	eassing through an area in					
	(A)	one millisecond	(B)	one minute					
	50	one second	(D)	one microsecond					
196.	One	reason for using recirculated air in a	a heating	system is because it					
	- 4	decreases warm up time	(B)	increases warm up time					
	(C)	reduces pollution	(D)	reduces traffic congestion					
197.	The	component that controls the flow of r	refrigera	nt as demanded by the system is called the					
	(A)	compressor	(B)	condenser					
	(C)	evaporator	200	expansion valve					
198.		um type brakes the fluids on releasi	ing, retu	rns to the master cylinder due to the action					
	(A)	by-pass port	D	wheel-cylinder spring					
	(C)	compensating port	(D)	brake shoe retractor spring					
199.	Нуро	id gears require special lubricant be	cause						
	(A)	teeth are made of soft material							
	D)	teeth are made of hard material							
	(C)	such gears rotate faster							
	0	sliding action is there between the	teeth						
200.	Increa	ase of torque in a vehicle is obtained	by						
	4	decreasing speed	(B)	decreasing power					
	(C)	decreasing petrol consumption	(D)	decreasing tractive effort					

GFTA/16 38

