i		
ı		J
ı	<	C
	ш	j
l	U	5

Question Booklet Code :	Register	1				
	Number	. 🗀				

2019 BIOLOGY

Time Allowed: 3 Hours]

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer, the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed, it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination, it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.
- 6. You will also encode your Question Booklet Code with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per Commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

A ● © D

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. Do not make any marking in the question booklet except in the sheet before the last page of the question booklet, which can be used for rough work. This should be strictly adhered.
- 11. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

SPACE FOR ROUGH WORK

JSOBY/19

2

1.	Fin	d out the false statem	ent				.: -	
	Ver	tebrates are			,			
	(A)	bilateral symmetry			(B)	sexual reprodu	action predon	ninant
	9	good regeneration p	ower	-	(D)	closed circulat	ory system	
-	· · ·							
2.	Pea	ırl Oyster, <u>Pinctada</u> <u>vu</u>	lgaris	belongs	to the	e class		
		Bivalvia	-		(B)	Scaphopoda		
	(C)	Gastropoda		· .	(D)	Cephalopoda		,
•				, ·				
3.	Mat	tch the following:			-			
•	(a)	Peking man	1.	Africa			**	
	(b)	Ternitier man	2 .	Europe				
	(c)	Neanderthal man	3.	China			. •	
. •	(d)	Solo man	4.	Java		•	• .	•
		(a) (b) (c)	(d)			,		
	J.	3 1 2	4					
•	(B)	2 3 1	4			·		
٠.	(C)	1 4 3	2	• • •				
	(D)	4 2 3	1			·		
		•					•	•
4		———— was the fir	at atau	a in hiimi	on áu	olution		
• • •	<u></u>	Bipedalism	si sici		(B)		rain size	
	(C)	Elongation of lower	limps		(D)	Changing of pe	-	
. •							_	
		•						
5.	The	first life in earth was	origin	ated dur	ing ea	arly ———		
	(A)	Azoic Era		•	9	Archaeozoic E	ra	
ı	(C)	Palaeozoic Era			(D)	Proterozoic Er	a	. *
←				3	•	•		JSOBY/19

6.	The	amphibian cave-dweller is —		•	
	(A)	Gronias nigrilabis	(B)	Chologaster cormutus	
•	(C)	Ambloyoposis spelaeus		Spelerpes maculicanda	
			. •.		
7.	Whi	ch of the following is a digene	tic nematod	e parasite	
	(A)	Fasiola hepatica	· · ·	Wucheria bancrofti	
	(C)	Taenia Solium	(D)	Ascaris lumbricoides	•
			•		
8.	Hun	nan karyotypes are routinely	prepared fro	<u>m</u>	
	(A)	erythrocytes	(B)	melanocytes	
	(9)	Leucocytes	(D)	Karyocytes	
			•		
9.	Fore	limbs of frog, bird, whale and	d man is an	example for	
	(A)	Vestigial organs		Homologous organs	
	(C)	Primitive organs	(D)	Analogous organs	•
10.	The	length of silk thread produce	d by a single	caterpillar is	
	(A)	100-700 m	(B)	500-1000 m	
	.9	1000–1500 m	(D)	800–1200 m	
11:	Sele	ct the wrong answer from the	following	•	
		v flies inhabiting the corpse crnation about	can provide	forensic investigators with me	aningful
:	(A)	Time of death		•	
	T)	Culprit			
	(C)	Movement of Corpse from o	ne site to an	other	
	(D)	Manner of death			• .
12.	Whi	ch one of the following inhibit	s the conduc	ction of nerve impulses	
	4	Acetyl Choline	(B)	Acetylcholine esterase	
	(C)	Coenzyme – A	· (D)	Acetate	

13.	Amnion helps in										
	4	Protection from shocks	(B)	Digestion							
	(C)	Excretion	(D)	Respiration							
14.	The	monoecions animals have									
	(A)	Male reproductive organ only									
	(B)	Female reproductive organ only									
	(C)	Either male or female reproductiv	e orga	ın							
	S	Male and female reproductive orga	ans								
15.		ing muscle contraction the sacromesliding filament theory.	ere lei	ngth becomes — according							
	(A)	No change	98)	Shorter							
	(C)	Longer	(D)	Longer than Shorter							
16.	The	cephalothorax is divided into		— segments in class pycnogonida.							
	(A)	4	(B)	5							
	0	3	(D)	2							
17.	The	prolonged severe pain with sweatin	g and	vomiting is the symptom of ———							
	(A)	Attrial fibrillation	(B)	Ventricular Fibrillation							
	(C)	Angina Pectoris		Myocardial Infarction							
18.	4.0		uman	heart is due to the greater availability							
	of—	ions.	(D)	174							
	(A)	Na ⁺	(B)	K+							
		Ca ⁺⁺	(D)	Cl							

	()	2.37 nm and 1.84 nm	(B)	2.55 nm and 2.37 nm
	(C)	1.84 nm and 2.37 nm	(D)	2.55 nm and 1.84 nm
				•
20.	Lipa	ase, choline esterase, Urease ar	e enzymes	which belong to the class of
	(A)	Oxidoreductases	(3)	Hydrolases
	(C)	Isomerase	(D)	Transferase
21.	Dru	gs involved in lowering cholest	erol in bloo	d
	(1)	Statin's	(B)	Tenofovir
	(C)	Zidovudine	(D)	Captopril
22.				to metals, choose the metalloenzyme
	asso	ciated with Zinc from the optio	ns given be	eiow
	(i)	Xanthine Oxidase		
	(ii)	alcohol dehydrogease		
	(iii)	Carbonic anhydrase		•
	(iv)	Cytochrome oxidase		·.
	(A)	(i) and (iv)		(ii) and (iii)
	(C)	(i) and (iii)	(D)	(ii) and (iv)
				•
23.	Whi mus		ydrogenase •	enzyme is present in liver and skeletal
	(A)	LDH ₄ and LDH ₃	(3)	LDH ₄ and LDH ₅
	(C)	$\mathrm{LDH_{1}}$ and $\mathrm{LDH_{5}}$	(D)	LDH ₂ and LDH ₄
100	Tha <i>tic</i> c			-

19. The helical diameter for B-DNA and Z-DNA are respectively

	(a)	Calli	phora v	icina	1.		Black bl	low	fly			
	(b)		nicia se		. 2.		Green bl					
	(c)		ia illust		3.		Bronze blow fly					
	(d)		mia reg		4.		Blue blo		-			
	(/		: - + 6						→		•	
		(a)	(b)	(c)	(d	.)			,			
		4	3	: ₂	1							
	(B)	1	2	3	4							
	(C)	4	3	1	2		•					
	(D)	3	4	2	. 1							
	(-)			_	–				.*			
	•				-					-		
25 .								carb	oon of the pentose	sugar in	DNA to	forn
	a-co	yalent	bond in	the p	urine	nucl	eoside					•
	-45	C_1					((B)	C_3		•	
	(C)	C_5					((D)	C_2			
			. Na									
	m	.1		1 .		, .	1 . 1			•		
26.					epinep	hrir	ne which	ı acı	ts as an agonists is	;		
26.	The (A)	Prop	ranolol		epiner	ohrir	ne which	act	Isoproterenol	;		
26.		Prop			epiner	ohrir	4	act (D) (D)	_	3		
26.	(A)	Prop	ranolol		epiner	ohrir	4		Isoproterenol	,		
	(A) (C)	Prop Sero	oranolol tonin				· ((D)	Isoproterenol			
26. 27.	(A) (C) The	Prop Sero first li	oranolol tonin ne of sc	reenir	ng test		diabetes	(D)	Isoproterenol Histamine	•		
	(A) (C)	Prop Sero first li	oranolol tonin ne of sc ated had	reenir	ng test		diabetes	(D) is is (B)	Isoproterenol Histamine GTT			
	(A) (C) The	Prop Sero first li	oranolol tonin ne of sc	reenir	ng test		diabetes	(D)	Isoproterenol Histamine			
	(A) (C) The	Prop Sero first li	oranolol tonin ne of sc ated had	reenir	ng test		diabetes	(D) is is (B)	Isoproterenol Histamine GTT			
27.	(A) (C) The (A)	Prop Sero first li glyca glyca	oranolol tonin ine of sc ated had osuria	reenir emoglo	ng test obin	for	diabetes ((D) s is (B) (D)	Isoproterenol Histamine GTT VLDL		sis of in	suli
	(A) (C) The (A) The	Prop Sero first li glyca glyca prepr	oranolol tonin ne of sc ated had osuria	reenir emoglo	ng test obin	for d	diabetes ((D) is is (B) (D)	Isoproterenol Histamine GTT		sis of in	ısuliı
27.	(A) (C) The (A) The	Prop Sero first li glyca glyca preprain ho	oranolol tonin ne of sc ated had osuria o insuli	reenir emoglo	ng test obin	for d	diabetes ((n involved)	(D) (is is (B) (D) vved y	Isoproterenol Histamine GTT VLDL as precursors for		sis of in	ısulir
27.	(A) (C) The (A) (C)	Prop Sero first li glyca glyca preprain ho	oranolol tonin ine of sc ated had osuria o insuli w many and 86	reenir emoglo	ng test obin	for d	diabetes (n involved)	(D) (D) (is is (B) (D) (V) (V) (B)	Isoproterenol Histamine GTT VLDL as precursors for 86 and 108		sis of in	sulii
27.	(A) (C) The (A) The	Prop Sero first li glyca glyca preprain ho	oranolol tonin ne of sc ated had osuria o insuli	reenir emoglo	ng test obin	for d	diabetes (n involved)	(D) (is is (B) (D) vved y	Isoproterenol Histamine GTT VLDL as precursors for		sis of in	sulii
27.	(A) (C) The (A) (C)	Prop Sero first li glyca glyca preprain ho	oranolol tonin ine of sc ated had osuria o insuli w many and 86	reenir emoglo	ng test obin	for d	diabetes (n involved)	(D) (D) (is is (B) (D) (V) (V) (B)	Isoproterenol Histamine GTT VLDL as precursors for 86 and 108		sis of in	sulii
27.	(A) (C) The (A) (C) The cont	Prop Sero first li glyca glyca preprain ho 108 : 21 ar	oranolol tonin ne of sc ated had osuria o insuli w many and 86 nd 30	reenir emoglo in and	ng test obin I proin	for o	diabetes (in involve) ((((((((((((((((((((D) (is is (B) (D) (V) (V) (V) (V) (V) (V) (V) (V) (V) (V	Isoproterenol Histamine GTT VLDL as precursors for 86 and 108	synthes		sulii
27. 28.	(A) (C) The (A) (C) The cont	Prop Sero first li glyca glyca preprain ho 108 : 21 ar	oranolol tonin ne of sc ated had osuria o insuli w many and 86 nd 30	reeniremoglo	ng test obin I proin o acids	for o	diabetes (in involve) (pective) ((te disease	(D) (is is (B) (D) (V) (V) (V) (V) (V) (V) (V) (V) (V) (V	Isoproterenol Histamine GTT VLDL as precursors for 86 and 108 30 and 21	synthes		sulii

30.	Which among the following is a specific carcinogenicity test?										
	(A)	HLA typing	(B)	Widal Test							
	(C)	Comet Assay		Ames Test							
					. •						
31.		mpound resulting in c s are missing in <u>Maxin</u>	_	-							
	(A)	Dimethyl sulphate		Piperidine	8						
	(C)	Hydrazine	(D)	Rnase							
32.	In R	IA, labelled antigen an	d unlahallad antig	an compata for lin	nited number of						
02.		antibodies	(B)	antigens	inca mamber of						
	(C)	complement	(D)	flourscent compo	ounds						
			. (2)	mode comp.	4						
33.	DNA	damage in cell can be	detected by								
	(A)	Single cell gel electro	phoresis	•							
	(B)	Zero integrated field	electrophoresis								
	(C)	Field inversion gel el	ectrophoresis								
	(D)	Capillary electrophor	esis								
34.		n laboratories perform em repeats (STR) are a		-	•						
	(1)	16 STR	(B)	5 STR							
	(C)	2 STR	(D)	7 STR							
	•		•								
35.	A PC	CR based molecular ger	netic marker is								
	(1)	RFLP	(B)	AFLP	•						
	(C)	RAPD	(D)	VNTR							
96	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ah ana af tha fallawi	mathada Dustain a	ntigana ara datari	- nd						
36.		ch one of the following Southern blotting		-							
	(A)	•	(B)	Northern blottin	rg						
		Western blotting	(D)	PCR							

37.	Abo	ut 60% of the Semen volume is	derived from	om								
	(A)	Epididymis	. (2)	Seminal vericles								
:	(C)	Bulbourethral glands	(D)	Prostate glands								
		•										
38.	The	length of the primer sequence	for RAPD t	echnique is								
	(A)	10-20 nucleotides	(B)	20 nucleotides								
	· (C)	6-8 nucleotides	16)	10 nucleotides								
	•		•									
39.	Taq	DNA polymerase enzyme exhi	bits best ac	tivity at	temperature							
·	(2)	72° C	(B)	90° C								
	(C)	40° C	(D)	50° C								
		·										
40.	The	gram positive bacteria can be i	dentified b	v the gram staining	z because of the							
	(A)											
·	(B)	Cell wall have more lipids con		peptidoglycon								
	(C)	Cell membrane has more fatt	y acids		•							
	1	Cell wall have more peptidog	lycon comp	ared to lipids	·							
		•	•									
41.	Grov	vth in broth cultures occurs ma	ainly in the	form of	,							
•	(A)	Sediment	(8)	Viscous								
	(0)	Heavy surface pellicle	(D)	Slightly turbid	•							
		•	-		-							
42 .	Whic	ch of the following is not a phys	sical metho	d for selection of pu	ire culture?							
	(A)	pH of the media	(B)	Cell size and moti	lity							
	(C)	Heat treatment	O	Use of dilute medi	a							
			•									
43.	_	ability of the lenses to show	the details	of object lying be	tween two points is							
	(A)	Magnification	(P)	Resolving power								
	(C)	Numerical aperture	· (D)	Optical increase								
		•			and the second s							

44.	Mat	ch the	followi	ıg:				
	(a)	HIV	1.		1.	Bats	•	,
	(b)	NIPA	Н		2,	Mosquitoes		•
• .	(c)	LASS	SA		3.	Monkey		•
	(d)	Chik	unguny	a	4.	Rodents	,	
		(a)	(b)	(c)	(d)			
	(A)	3	.2	4	1			
•	(3)	3	1 .	4	2		•	•
	(C)	4	3	1	2			•
•	(D).	2	1	. 3	4			
45 .	The	capaci	ty to in	fect cell	cultur	e laboratory v	workers with unrec	ognized viruses
	(A)		errorisn			V	Biohazards	
	(C)	Biow	reapon			(D)	Biowar	
						- *	•	
46.	The	term v	rirulenc	e refers	to the			·
	(A)	Num	ber of r	nicroor	ganism	(3)	Intensity of patho	ogenicity
	(C)	Resis	stance o	f organ	ism.	(D)	Expression of org	anism
						-		
47 .	The	Assess	ment o	f microl	oial div	ersity by the	use of microarray	called
	(A)	Poly	chip .	•		. (B)	Microchip	
		Phyl	ochip			(D)	Phylogenesis	
	-	•					• .	
	•	·						
48 .		·· ,··	is ı	ised as	a food	in space-fligh	ts	
	(A)	Ulva				46)	Chlorella	
·	(C)	Musi	hroom			(D)	Microcysties	
	•			٠.				
40	17.1							• .
49.	_	edrine			•	·/=-\	T11 1.1	
	(A)	Stere				(B)	Flavonoid	
•		Alka	loid			(D)	Terpenoid	
IGOI	BÝ/19	•		• .		10		

50.	In plant cells the middle lamella chiefly consists of									
	(A)	Cell	ulose			(B)	Lignin			
	(0)	Cald	ium pe	ctate		(D)	Mucopolysaccharide	5		
51.	Mat	tch the	followi	ng:			-			
	Cha	racter	istics of	f eukary	otic cells	with their f	functions	•		
	(a)	Lyso	somes			1. 1	Protein synthesis			
	(b)	Roug	h ER			21	Photo synthesis			
	(c)	Golg	i comple	e x		3. 1	Digestive enzyme stor	age ,		
	(d)	Chlo	roplasts	3		4.	Secretion			
		(a)	(b)	(c)	(d)					
	(A)	3	1	2	4	-	•			
	(B)	3	1	4	2		,			
	(C)	3	2.	4	1		•			
	(D)	4	1	3	2					
59			ar	a tha ril	onucleo-n	rotoin hodi	ies in a cell.	•		
52 .	1	Ribo	somes	c 1110 111	ondereo-p	(B)	Golgi complex			
•	(C)	Nuc				(D)	Vacuole			
	(0)	Nuc	ic its			(D)	v acuote			
			٠				•			
53.				fcalciun	a carbonat		within a plant cell is o	alled as		
	(A)		plasm				Cystoliths			
	(C)	Poly	some			(D)	Protein			
								•		
54 .	Find	d out t	he corre	ect answ	er with re	espect to hi	gher plants			
-	I.	Dict	yosome	s are fo	und scatte	red throug	hout the cytoplasm			
	II.	Dict	yosome	s are lo	alized an	d found bet	ween the nucleus and	periphery		
	III.	Dict	yosome	s are cir	cum-nucle	ear in posit	tion			
	IV.		-	s are po						
	(A)	I, II,	III and	ı IV		(B)	I, II and III			
	(C)	Į an				101	Only I	•		
~			•		•	11		JSOBY		

60.	Ecads	910
UU.	Duaus	are

- (A) Individuals of same species with same morphological and physiological characters
- Individuals of same species with slight difference in morphology which is due to differing environment
- (C) Individuals of same species with slight difference in morphology due to mutation
- (D) Individuals of same species with slight difference in morphology due to different environment and the difference is irrecoverable
- 61. The term 'urticle' means
 - (A) Circular in outline
 - (B) Provided with excrescenes on surface
 - Membrane sac surrounding ovary
 - (D) A narrow extension of carpes
- 62. Cordiaitales 'do not' resemble order.
 - (Calamitales

(B) Cycadales

(C) Ginkgoales

- (D) Cycado filicales
- 63. The most important Indian Fossil of Cycads is
 - (A) Lyginopteris

(B) Rhynia major

ای

Williamsonia Sewardiana

- (D) Lagenostoma Lomaxi
- 64. Which tree is popularly called as soapnut tree?
 - (A) Myristica fragrans

Sapindus emarginacus

(C) Calathea lutea

(D) Copernicia cerifera

								•	
65.	Ann	ual rin	gs are	distinct	in plant	t growi	ng in	·	
	(A)	Gras	s lands	3		-	(B)	Arctic region	
	(C)	Trop	ical reg	gions			(1)	Temperate regions.	
					•	· •			
		e.		•			÷		
66.					sis occui	rs at the			
	(A)		germin			-	(B)	formation of buds	
		form	ation o	f poller	n grains		(D)	formation of root prime	rdia
					• •.				
					٠.				
•								· .	
	; D				a•				
67,					discovere	ea by		Nawaschin	
	(A) (C)		wenho neister				(D)	Hooke	
	(0)	Hom	reister				(D)	Hooke	
							_		
68.	Mat	ch the	followi	ng and	choose t	he corre	ect op	tion given below:	•
	· (a)	Poller	ı in Ḥo	ney		1.	Me	littopalynology	
	(b)			dical as	moete	2.	Tota	ropalynology	
					pecus	-			•
	(c)	Poller	n in Air	•		3.	Aer	opalynology	
	(d)	Poller	n in fos	sils		4.	Geo	palynology	
		(a)	(b)	(c)	(d)				
,	(A)	1	.2	3	4.	-	-		
	(B)	2	· 1	3	4		:	•	-
	(C)	3	1	2	4			•	
	(D)	-	9	9					

69.	Match	tha	follo	mino	Hada	onhart	
00.	Match	THE	10110	gillw	Hyun	opnyu	25 .

- (a) Rooted floating
- (b) Free floating
- (c) submerged leaf needlelite
- submerged leaf complete (d)
 - (a) (b) (c) (d)
- 1 . 4 2 3
- 1 3 4 2
- 2 (C) 1 3 4
- (D) 3 2 4 1

Match the following: 70.

- Cladode (a)
- (b) Phyllode
- Phylloclade (c)
- Halophytes (d)
 - (a) (b) (c) (d)
- 1
- (A) 3 2 4
- 2 4. 3 1 2 3 4 1
- 2 4 3 1 (D)

Rhizophora 1.

Nymphea

Vallisneria

Pistia

Hydrilla

1.

2.

3.

4.

- 2. Ruscus
- Acacia melanoxylon 3.
- opuntia 4.

- Introduction of foreign gene for improving genotype is called 71.
 - (A) Eugenics

Hybridization

mutation breeding (C)

- Genetic engineering
- The process of genetic information flowing from DNA to RNA to proteins is called, 72.
 - Gene mutation

(B) Gene annealing

Gene expression

+

(D) Gene flow

73.	Pot	ability	of wate	er can be	e gauge	ed by	y the prese	ence of					
	(A)	Laci	tobacillis	us bulgo	iricus		(3)	Enterol	bacter aei	rogens			
	(C)	Clos	seridiun	ı botuli	rum .		(D)	Helicob	pacter pyl	ori			-
							,						
74.			prod	uct is pr	oduce	d by	Rhizopus	nigrican	S.				
٠.	(1)		naric ac			v	(B)	Citric 8					
	(C)	Lact	tic acid				(D)	Gibber	ellic acid	•			
											·		
75. ·			of easi		aboliza	able	organic	matter	to speed	d up	the	proce	ess of
	(A)	Ana	bolism	,			(B)	Cannib	alism				
•	(C)	Met	abolism	L			40)	Cometa	abolism				
													_
76.	Wha	at are	Piezoph	ilic mic	robes?								
	(A)						perature						
	(B)			_	_		erature						
	6						ospheric p	ressure					
	(D)	Microbes growing in low atmospheric pressure											
77.	Mot	ah tha	followi	n ar						-			
``	Mai		rrhizal	J			Associate	ed funga	l function	1			. ,
	(a)	Ector	ny corr	niza	,	1.	Nutrient matter	up take	and mir	ierali	zation	of or	rganic
	(p)	Arbu	scular		·	2.	Nutrient	up take	and tran	sfer	,		
	(c)	Erica	ceous		,	3.	Nutrient	up take	and seed	l aggr	egati	on	
	(d)	Ecter	ndomyc	orrhizae	•	4.	Minerali	zation of	forganic	matte	r onl	y	
		(a)	(b)	(c)	(d)			•					
	(A)	1	2	3	4			٠					
	(B)	2	1	3	4								
	(C)	4	2	1	3								
	(0)	2	3	4	1				÷.				

				may cause damage during the prenata ese factors are collectively referred as								
	(A)	Teratogene	(B)	Hormones								
	(C)	Nicotine	(D)	Radiation .								
79.	Whi	ch of the following is the met	hod of studyi	ing growth?								
	(A)	Longitudinal method	(B)	Cross-sectional method								
	(Ġ)	Both (A) and (B)	(D)	Neither (A) nor (B)								
80.	Fath	Father of American forensic Anthropology										
	(A)	Thomas Dwight	(B)	G.A. Dorsey								
	(C)	Paul Stevenson	(D)	T.D. Stewart								
81.	A.C.	A.C. Haddon divided India into how many geographical regions?										
	(A)	Three	(B)	Four								
	(C)	Five	(D)	Six								
82.		Who among the following traced Six major racial strains and Nine sub types among the modern Indian Population.										
	(A)	A.C. Haddon	(B)	Von Eickstedt								
	(O)	B.S. Guha	(D)	H.H. Risley								
83.	Cri-d	du-chat syndrome is due to										
	(A)	Deficiency in chromosome I	Number 5									
	(B)	Dublication in chromosome	Number 5									
	(C)	Inversion in Chromosome N	Vumber 5	• •								
•	(D)	Translocation in Chromoson	me Number (5								
84.	Trisa	anic condition for the chromo	some no. 18									
	(A)	Edward Syndrome	(B)	Patau's Syndrome								
	(C)	Klinefelter's Syndrome	(D)	Turner Syndrome								

85.	Actio	n Anthropology is		
,	(A)	The study of social action		
	(B)	The study of cultural behavio	our of man	
	(C)	The study of human activity		
	(D)	The study related to applied	anthropology	
	•			
	٠.		•	•
86.	Who	is the author of the book, "His	_	
	(A)	E.B. Tylor	(B) Robert H. Lowie	9
	(C)	Dell Hymes	(D) Franz Boas	•
			·	
0.7	36.11			
87.		cal / Nutritional anthropology		
	(A)	Social - Cultural anthropolog	S Y	
	(B) (C) ♠	Biological anthropology		
	(C)	A common ground with both	•	pology
·	(D)	An exclusive independent bra	inch of Anthropology	
88.	Deve	lopment Anthropology		
,	(A)	Is a branch of applied Anthro	mology	
	(B)	An area of specialization in e		• .
	(C)	An independent specialized b	• •	v
	(D)	None of the above	·	,
	(2)			
89.		definition of Health i.e. "Health well being and not merely the	-	· · ·
	(A)	UNO	(B) WHO	
	(C)	ICMR	(D) UNESCO	
90.	The p	edigree of the informant is tr	aced in which technique	
	(A)	Genealogical technique	(B) Case history ted	chnique

(C)

Descriptive technique

(D) Narrative technique

+		1	9		JSOBY/19
	(C)	Fehling solution	(D)	Benedict's solution	
	(A)	Haeyem's solution	(B)	Glacial acetic acid	
96.	The	diluting fluid used for diluting bloo	d for I	RBC enumeration	
	(C)	Isomer	(D)	Monomer	
	(A)	Polymer	(B)	Tetramer	
95.	Acry	rlamide used in electrophoresis tech	nique	is a	/
					1
	(D)	Z chromosome sex determinant			
	(D)	Z chromosome sex determinant			
	(D) (C)	X chromosome sex determinant	mome	osome	
	(A) (B)	Sex determining region of the X c	hromo	osome.	
94.		Y Chromosome sex determinant			
0.4	C	gono io			· / · /
201-	(C)	a community	(D)	a folk	f f
	(A)	a people	(B)	a group	
93.	In G	reek 'ethnos' means			
	(D)	All of the above			
	(C)	Avoid having to test hypothesis			
	(B)	Study how people think rather th	an ho	w they behave	
	(A)	Describe and explain diverse cult			
92.		hropologists rely on field work to			
	(D)	The emotional emphasis of a cuit	ure		
	(D)	The emotional emphasis of a cult		ived from its constituents	
	(C)	The cognitive processes operative The formal appearance of a culture			
	(B)			n o oulturo	
	(A)	The aggregate of cultural constitu	ients		

91.

According to A.L. Kroeber, 'Eidos' means

97.	Select the correct answer from the following: Malarial fever is caused by									
	I. II. III. IV. (A)	Anopheles culicifacies Anopheles Stephensi Culex fatigans Aedes aegypti III and IV		I and II						
	(C)	III	(D)	IV						
98.	Whi	ch of the steroid hormone	does not contair	receptors at nucleus?						
	(A)	Aldosterone	(B)	Estrogen						
٠.	(C)	Progesterone	, (1).	Glucocorticoid						
99 . ·		inflammation occurs in t ptom of disease called	the wall and lin	ning of the urinary bladder shows th						
	(A)	Cystitis	(B)	Nephritis						
	(C)	Calculi	(D)	Metabolic alkalosis						
100.	Which of the following organ is formed during 5th day of incubation of chick?									
	(A)	Feathers	(B)	Beak						
	S	Heart	(D)	Functional Metanephron						
101.	Snal	kes are classified under th	ne subclass	·						
	(A)	Synapsida	(B)	Anapsida						
	S)	Diapsida	(D)	Parapsida						
***	m:		ar .							
102.		number of human chromo		-						
	(A)	Tjio and Levan	(B)	Moorhead et. al.						
	(C)	Painter	4 7	Winiwarter						

103.	Idei	atify tl	he correc	et seque	nce of	arval stages in Pena	ieus	•			
	(A)	Mys	sis, Nau <u>j</u>	olius, Z o	ea, My	sis					
	(B)	Pro	tozoea, N	Vauplius	s, Zoea	Mysis					
	(C)	(C) Metanauplius, Nauplius, Zoea, Mysis									
	(1)	Nau	ıplius, M	[etanau]	plius, 2	oea, Mysis			•		
•								. •			
104.		ch Lis lists	st I with	List II	and s	lect the correct ans	wer using the o	odes given	belov		
		List l	[ŕ	List II					
	(a)	Barit	um Carb	onate	.1.	Animal origin			٠		
	(b)	Orga	nophosp	horus	2.	Plant origin					
	(c)	Rote	noids		3.	Organic compound					
	(d)	Nere	istoxin		4.	Inorganic compoun	d				
		(a)	(b)	(c)	(d)						
		4	3	2	1 .						
_	(B)	4	. 3	1	2						
	(C)	4	1	2	3 ·						
	(D)	3	4	1	2	· .					
,	•										
105	: []	4°C-41	1					C 1			
105.	(A)		ie musci istric mi		ı is no	associated with pois (B) Sphen	son apparatus o opterygoid mus				
	(C)	-	poralis i	-			ostal muscle	cie			
	.(0)		iporans i	inascie		(LD) Interes	ostar muscre				
								•			
106.	The	first o	rganism	to have	the co	mplete genome sequ	ence was		•		
	(A)	Esch	nerichia	coli		(B) Drosop	phila melanoga	ster			
	9	Hae	mophílu	s influei	ızae	(D) Saccha	aromyces cerevi	siae			
						•					
· 								•			
107.				al capaci	ity of I	omo erectus pekines		 .			
	(A)	660	0.0. 5 C.C.			(B) 900 C.					
		1075) U.U.		•	(D) 1450 (<i>7.</i> 0. ·				
_						91		ICOL	QV/10		

108.	Point out the wrong statements:									
	State	ement:								
	I.	The average num	nber of blood plate	elets is 200,000 to 300,0	000 per cubic					
	II.	Eosinophils constit	tute 2-4 percent of le	eucocytes						
	III.	Size of basophils va	ary from 8 to 10 μ							
	IV	Neutrophils constit	tute 8–10 percent of	fleucocytes						
	(A)	I and II			1					
	(B)	II and III								
	S	IV								
	(D)	I, II and III								
109.	Which of the following is not correctly matched.									
	(A)	Oxytocin –	Parturition							
	(B)	Oxytocin –	Expulsion of foetu	IS						
	9	Oxytocin -	Control bleeding is	n the gastric region						
	(D)	Oxytocin –	Induce uterine con	ntraction						
110.	Resp	Respiration in arachnids is affected by								
	(A)	gill books		booking						
	(C)	gills	(D)) trachea						
111.	The calle		nan sperm is surrou	anded by a peripheral laye	r of cytoplasm					
	(A)	Axaplasm	48)	Manchette						
	(C)	Protoplasm	(D)) thick fibre						
112.	Hart	man's sign occurs d	uring							
	1	Ovulation	(B)) Gestation						
	(C)	Partorition	(D)) Spermiation						

113.		diluting fluid used for the white roy Red Blood cells.	blood co	ells counting cont	ains ——	to
		Acetic Acid	(B)	Sodium chloride		
	(C)	Sodium sulphate	(D)	Mercuric perchlo	oride	
	-					
114.	The.	precursor to melatonin is			_	
	(1)	serotonin	(B)	tryptophan		
	(C)	N-acetyl transferase	(D)	inhibin	•	
115.	Pata	rnity test is based on			٠.	
110.	(A)	Protein sequencing	(B)	Cryopreservatio	n	
	(C)	Monoclonal antibodies		DNA profiling	• .	· · · · · .
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		,		•	
110	TT-1:			in human.		
116.		cobacter pylori infection causes — Hiatushernia		Peptic ulcer		• *
•	(A) (C)	Diarrhoea	(D)	Jaundice		
•	(0)	Diairiisea	(12)			
	· 					
117.	-	ral cotton research institutes is lo		_		
	(A)	Chennai	· (B)	Bangalore		
	(C)	Mumbai		Nagpur		
				·.		
118.		science that deals with periodic tation to solar and lunar related i			organisms,	, and their
	(A)	Physiology	(B)	Anthropology		
	(C)	Endocrinology		Chronobiology		
119.	Malt	cose is composed of	. ,			. :
		2∝-D- glucose				
	(B)	$\propto -D$ glucose and $\beta - D$ – fructose	e .			
	(C)	$\beta - D$ – galactose and $\beta - D$ – glu				•
	(D)	$2\beta - D$ – fructose		-		
	` '	•			•	

	(i)	Amino acids are Amphoteric con	npounds	
	(ii)	Glycine is an optically active cor	npound	
	(iii)	Amino acid possessing positive a	and nega	tive changes are Zwitterions
	(iv)	pH at which amino acid has no electrode is ISO electric point.	tendenc	y to move either to positive or negative
•	4	(i), (iii) and (iv) are correct	(B)	(i), (ii) and (iv) are correct
	(C)	(ii) and (iii) are correct	(D)	(i) and (iv) are correct
121.	The	aminoacid which contains sulphi	ır in alip	hatic side chain.
	(A)	Aspartic acid		Cysteine
	(C)	Histidine	(D)	Citrulline
122.	RNA	Aase P is involved in which of the	following	v biochemical reaction
122.	(A)	RNA splicing		RNA cleavage and ligation
	(C)	RNA phosphorylation	(D)	RNA aminoacylation
123.	Hoo	gsteen pairing allows the formati	on of	
	J.	Triplex DNA's	(B)	Tetraplex DNA's
	(C)	Quadruplex DNA's	(D)	Cross shaped DNA
124.	Poly	radenylate sequences (Poly A) are	found at	the
	(A)	3' end of prokaryotic mRNA		5' end of prokaryotic mRNA
	100	3' end of eukaryotic mRNA	(D)	Both (A) and (C) are correct
125.	To w	which arm of the tRNA, molecule (the amin	oacids are attached.
	(A)	Anticodon arm	(B)	T \PC arm
	(C)	D arm		Acceptor arm

JSOBY/19

120. Which of the following statement on aminoacid are correct

126.	Which of the following hormone is an amino acid derivative											
	(i)	i) epinephrine										
	(ii)	norepinephrine										
	(iii)	thyroxine										
		(i), (ii) and (iii)	(B)	(ii) and (iii)								
	(C)	(iii) alone	(D)	(i) and (ii)								
		•		· · ·								
127.		Which of these hormones are antagonistic to action of parathoromone secreted from the parathyroid gland?										
	(A)	glucagon	(B)	calcitriol								
	9	calcitonin	(D)	cholecystokinin								
128.		inylated antibodies are used to c wing technique.	apture	avidin or streptavidin in which of the								
	VA,	ELISA	(B)	RIA								
	(C)	Dot blot	(D)	Autoradiography								
			_									
129.		proof reading ability of Taq polym										
,	•	5' to 3' exonuclease activity		3' to 5' exonuclease activity								
	(C)	3' to 5' endonuclease activity	(D)	5' to 3' endonuclease activity								
130.	Conc	aration of proteins by gel electroph	orosia i	s based on								
150.	(A)	migration rates in a charged elec		•								
		Relative size of the protein	,uic iic									
,	(C)	Hydrophobicity of proteins										
	(D)	Distribution coefficient										
	(D)	DISTIBUTION COOLINGTON										
131.	Carc	inogens can be detected by which	of the fo	ollowing test								
	(A) Comet Assay Ames Test											
	(C)	Pyrosequencing	(D)	Tuberculin Test								
				•								

	(A)	IgE	(B)	IgA
	(C)	IgM		IgG
			•	•
133.	In h	uman, MHC proteins are en	coded by a clu	ster of genes located in chromosom
	(A)	17	. (B)	16
	(2)	6	(D)	5
`		•		
134.	Mat	ch the following nature of U	rine specimen	with their respective crystals.
		Urine sample	Crystals pre	sent
	(a)	Normal Alkaline Urine	(i) Calcium o	oxalate
	(b)	Abnormal Urine	(ii) Ammoniu	um Biurate
	(c)	Normal Acidic Urine	(iii) Sulphon	omide .
			(iv) Epithelia	al Casts
		(a) (b) (c)	-	*
•		(ii) (iii) (i)		
	(B)	(iv) (ii) (i)		
	(C)	(iii) (ii) (iv)		
	(D)	(ii) (i) (iii)		
				•
135.	Whe	en fully saturated with oxyg	en each gram	of haemoglobin contains
		1.34 ml of O ₂	(B)	1.42 ml of O ₂
	(C)	$0.34 \text{ ml of } O_2$	(D)	13.4 ml of O ₂
136.	The	lumbar puncture needle for	collection of c	erebrospinal fluid measures
	(A)	5-6 cm		10 – 12 cm
	(C)	$15-20~\mathrm{cm}$	(D)	7 – 8 cm
137.	Rust	t coloured sputum is seen in		·
	مين	Pneumococcal pneumonia		Acute cardiac infarction
	(C)	Pulmonary infarction	(D)	Neoplasm invasion
· ICON	37/3 A			
JSOB	1/19	1	26	•

132. An immunoglobulin produced in large quantities during secondary immune response

138.	In t	he disease Q Fever, the Q	stands for ——	•	
	Ser.	Query	(B)	Question	
	(C)	Quick	(D)	Quarternary	•
139.		e phenomenon in which ected from infection by ot			ı of a virus are
	(A)	Immunization	(B)	Systemic Acquired Re	sistance
	10)	Cross protection	(D)	Hyper sensitivity	
					-
1.40	ъ				
140.		culture technique was in		A1 1 (1	
	(A)	Louis Pasteur	(B)	Alexander flemming	
	(C)	Waksman		Robert koch	
				·	
141.	Whie	ch one is not a contribution	on of Louis Paste	eur	
	(A)	"Life begets Life"	(A)	Antibiotics	
	(C)	Pasteurization	(D)	Vaccination	
	` /	· ·	,		
			•		
142.			ional introduction	on of biological agents	into food, water,
		ll group of individuals.		.	
•	(A)	Biogas	(B)	Bio weapons	•
	(C)	Biological oxidation	(199)	Bio crimes	
	,				
143.	The	weaponization and purpo	seful transmissi	on of human pathogens	is called
	(A)	· Bioluminescence	(B)	Biohazards	
-	0	Bioterrorism	(D)	Biomagnification	

144.	Bryo	phyte named "moss cotton" is						
	(1)	S phagnum	(B)	Porella				
	(C)	Jungermannia	(D)	Frullania				
1 45.	Colo	icolos Ryvonhyto is						
140.	· (A)	icoles Bryophyte is		Tortell tortusa				
	(C)	•	(D)	Rhacomitrium				
	(0)	Leucobryum graucum	(D)	Knacomitrum				
146.	The organ which 'does not' play a role in attachment of lichens							
	(A)	Mapters	(3)	Blastidia				
	(C)	Medullary hyphae	(D)	Hypothallus				
147.	A	·lus is success in the engage since	Æ					
147,	(A)	ulus is present in the sporangium o Salvinia		Dhymia				
	(A)	Adiantum	(B) (D)	Rhynia Cycas				
	(Adiantum	(D)	Cycas				
148.	Evos	sin' is derived from						
	(A)	Actinomycetes	(B)	Bacteria				
	(C)	Fungi	(0)	Lichen				
144	(Ch.		•					
149.		smolithic' algae occur in desert soil surface						
	(A) (B)	on lower surface of stones on dese	et coil					
	(B)	in the rock fissures in desert soil	ert som					
	(D)	·		•				
	(D)	penetrating rocks in desert soil						
150.	Whic	ch one of the following is not a com	ponent	of cytoskeleton?				
	(A)	Actin filaments	(B)	Microtubules				
	(C)	Intermediate filaments		Plasmodesmata				

151.	"Hy	drolyt	ic énzyı	nes" are	stored in		·			
	(A)	Chl	oroplas	t		(B)	Nucleus			
	(C)	Chr	romopla	sts .	-	Vol	Lysosomes			
152.	Hov	v man	y forms	of rust	attack whe	at in Indi	a?			
	(A)	2				(3)	3			
	(C)	4				(D)	5			
153.	Acti	Active invasion of pathogen within host is by								
	(A)	Bac	teria			(B)	Fungi			
	(C)	Viru	uses			(D)	Mycoplasmas			
154.	Mat belo		e list –	I with l	list – II and	d select t	he correct answer from the codes	s given		
		List	I				List II			
	(a)	Pent	ose pho	sphate p	athway	1.	Krantz anatomy			
	(b)		lants			2.	•			
	(c)		toplasty			3.	• •	nt		
	(d)	Flavi	in Aden	ine Din	ucleotide	4.	Stolen plastid			
•		(a)	(b)	(c)	(d)					
	(A)	1	3	4	2					
	(B)	3	1	2	4					
•		3	1	4	2	_				
	(D)	3	4	2	1			•		
155.	The	word	Enzyme	e, literal	lly means		•			
	(1)	in y	east			(B)	in Bacteria			
	(C)	in F	ungi			(D)	in life			
156.	In g	eneral	l, unfav	ourable	growth con	ditions w	ill ———— respiration.			
	(1)	Incr	ease			(B)	Decrease			
•	(C)	Cut	short			(D)	Incomplete			
(29		BY/19 1 over		

157	Which of the	following is	compostly	matchad	cuffix?
101.	which of the	10HOWING 1S	correctiv	matched	Sumx:

opsida

I. class -

II. order - ineae

III. suborder - ales

IV. sub. family - aceae

- (B) II
- (C) III (D) IV

158. Match the following:

The sub families of Leguminosae is divided as

- (a) Mimosoidae
- 1. Zygomorphic ascending aestivation
- (b) Caesalpinioidae
- 2. Zygomorphic descending aestivation
- (c) Papilionoidae
- 3. actinomorphic valvate aestivation
- (a) (b) (c)
- (A) 3 2 1
- (B) 2 3 1
- (C) 1 3 2
- 3 1 2

159. The Central National Herbarium is located at

(B) Mumbai

(C) Delhi

(D) Chennai

160.	W N1	ch of the following is correctly mate	hed?	
	I	Plant worshiped by Tribals – Oci	mum	
	Π	Tribals Antidote plant – Mangifer	ra.	
	III	Tribals sacred glove plant – Achy	ranthe	es
	· IV	Tribals edible plant – Acorus		
	((1)	I .	(B)	II
	(C)	III	(D)	IV
٠.				
161.	Whi	ch of the following is a Pseudocerea	1?	•
	4	Fagopyrum esculentum	(B)	Zea mays
÷.	(C)	Triticum aestivum	(D)	Oryza sativa
162.	Whi	ch one of the following yields resin,	timbé	r and pulp?
	(A)	Dalbergia	(B)	Pinus
-	(C)	Eucalyptus	(D)	Quercus
,				• .
	-			
163.	The	seed coat developing from the		
	(A)	Embryo Sac	(B)	Obturator
	10)	Integuments .	(D)	Nucellus
164.	Selec	ct the correct answer from the follow	ving	
•	The	Pericarp differentiated in to		
	I	exocarp, mesocarp and endocarp	-	
	II .	exocarp and epicarp		
	III	exocarp and mesocarp		
	IV	exocarp and endocarp	-	
٠		∲	(B)	11
	(C)	III	(D)	IV
	(-)	· ·	()	 .

Match the List - I with List - II and choose the correct answer from the options 165. given below: List - II List - I (a) Double fertilization 1. Richard Evans Schulter (b) Polyembryony 2. Haberlandt 3. Nawaschin Plant tissue culture (c) Anton Van Leewenhoek 4. (d) Ethnobotany (d) (a) **(b)** (c) 3 4 1 3 2 . 4 1. 1 166. The Pollen grains tablets have been used in the treatment of (A) Jaundice Brain fever **Prostatitis** (C) Ulcer 167. Phylloclade is a -- adaptation in xerophytes Morphological (A) Anatomical (C) Physiological **Embryological** 168. Point out the correct statement (1) Mangroove trees are halophytes (2)Mangroove trees exhibit pneumatophores (3)Mangroove trees have only +ve geotropic tap roots (4) Some Mangroove trees exhibit vivipary (A) 1,2 correct **(B) 1,2,3** correct 1,2,4 correct (D) 2,3,4 correct

32

169.		n linked characters on genes are rations, it is called	inh	erited together through two or more				
	400	Complete linkage	(B)	Continuous linkage				
	(C)	Consistent linkage	(D)	Incomplete linkage				
170.				large random-mating population by o of "QA: $(1-q)^2$ aa = 1" is known as				
	(A)	Stanford – Suneson law	(B)					
	(C)	Brigg's – Harlan law		Hardy – Weinberg law				
171.	The l	Mutagenic effect of X – rays was de	mon	strated for the first time in Drosophila				
	W.	H. J. Muller	(B)	C. Auerbach				
	(C)	W. R. Singleton	(D)	A. Gustafsson				
172.	The r	nutations study was proposed by						
		T. H. Morgan	(B)	L.J. Stadler				
	(C)	Albenburg	(D)	C. Auerbach				
173.	"BKN	M – DNA" is associated with	_					
	(A).	Next Generation Sequencing	(2)	DNA finger printing				
	(C)	Gene regulation	(D)	Gene cloning				
174.	Gene	recombinant technology is used for		,				
	(A)	vectorless gene transfer into target	cell					
	(B)	vector based gene transfer into targ		11				
	direct transfer of DNA protein complex							
	(D)	liposome base direct gene transfer i	nto t	arget cell-				
			•					

175.	Mon	oclonal antibodies can be produced	in spe	cialized cells through					
,	(1)	Hybridoma technology	(B)	Colorimetric techniques					
	(C)	Electrophoresis techniques	(D)	Electroporation					
176.	Azos	pirillum can be isolated from plant							
	(A)	stem	(B)	leaf					
	V	roots	(D)	node					
177.	Whi	ch among the following Bryophyte i	s popu	larly called "Bog moes"?					
	(A)	Anthoceros	(B)	Polytrichum					
	(C)	Funaria	T.	Sphagnum					
178.	Whi	ch is incorrect in the following sent	ence						
	(A)) Monoclonal Antibodies are highly specific							
	(B)	Monoclonal Antibodies are useful							
	(0)	Monoclonal Antibodies can be produced only in less quantities							
	(D)	Monoclonal Antibodies are unifor	m						
179.	Iden	tify the Shine-Dalgarno sequence							
	(A)	AGGAGGU	(B)	AGAGGUA					
	(C)	AAGGUAA	(D)	AUGAUGC					
180.	The	theory of evolution indicates that		· .					
	(A)	Man evolved from monkeys							
	(B)	Monkeys evolved from man							
	(C)	Man evolved from dinosaurs							
	P	Man and Apes had a common and	estor	•					
181.	Deve	elopment of human body is	-						
	(A)	Directional	(B)	Non directional					
	(G)	Multi directional	(D)	Bi-directional					

182.	Mea	surement of the living body inclu	ding hea	d and face comes under the perview of
	· (A)	Osteometry	(B)	Somatometry
	(C)	Craniometry	(D)	None of the above
	•		-	•
			•	
183.	Cam	bridge Expedition to Torres strai	ts field v	vork was done by
	(A)	Haddon	(B)	Rivers
	(C)	Seligman	(D)	All of the above
				·
			-	
184.		among the following established	ed partic	cipation as an important technique of
	(A)	Herskovits	(B)	Rivers
•	(C)	Seligman	(D)	Malinowski
		•		· ·
185.	you		mpound	much as you can, participate whenever your experiences by discussing them e".
	(A)	B. Malinowski	(B)	A.R. Radcliffe Brown
	(C)	H.J. Herskovits	(D)	A.C. Haddon
	•		-	
100	101 Tot	F D.:/b		
186.		Evans Pritchard did field work a	. <u> </u>	Annual of Foot Africa
·	(A) (C)	Myer of East Africa Both (A) and (B)	(B)	Azande of East Africa Andaman Islanders
	(C)	both (A) and (B)	(D)	Andaman Islanders
		_		
		·		
187.	Hypo	othesis testing is called	-	
	(A)	Deductive research	(B)	Inductive research
	(C)	Both (A) and (B)	(D)	None of the above
	•			

188.	The phenomenon of ecdysis takes place in								
189.	(A)	birds	(B)	insects					
	(C)	mammals	(D)	polychaetes					
189.	4	ovum which has been fertilized is o		· ·					
	(A)	Zygote	(B)	Inner cell mass					
	(C)	Female pronucleus	(D)	Blastocyst					
190.	The	organs which are functionless and	atroph	ied are called as					
	(A)	Vestigeal organs	(B)	Homologous organs					
	(C) .	Analogous organs	(D)	Artificial organs					
191.	The process which accomplishes the egg to start the cleavage is								
	(A)	Amphimixis	(B) √	Fertilization					
	(C)	Capacitation	(D)	Acrosome reaction					
192.	The	Father of biological taxonomy is							
	(A)	Aristotle	(B)	Pluto					
	(C)	Thesphrastus	(D)	Albertus Magnus					
19 3.	The	polypeptide chains of immunoglob	ulins a	re linked by					
	(A)	trisulphide bridges	(B)	disulphide bridges					
	(C)	dihydrogen bond	(D)	Covalent bond					
194.	A loc	cal thickening of the epiblast after	being l	aid is called					
	(A)	Endoblast	(B)	Primitive streak					
	(C)	Koller's spot	(D)	Koller's sickle					
		•							

195.		ch among the propologists?	following is	consider	ed important	for the	social-cul	tural
	(A)	The memoir in	terview	(B)	The interview	w with pris	oners	
	(C)	The psychoana	lysis	(D)	All of the abo	ove		
		·				• • •	•	
196.	Inte	nsive observation	n denotes					
	(A)	An in-depth ob	servation on si	nall closed	d community		•	
	(B)	Observation on			•		·	
	(C)	An observation	on large comm	nunity				
	(D)	All of the above						
	•						: .	
4 O E			1.1		1			
197.	4	has said to have	coined the ter					
	(A)	Aristotle		(B)	Plato			
	(C)	Socrates		(D)	Descartes		•	
			-					
198.	Whice place	ch among the fol	lowing discipl	ine is cond	cerned with m	an of all ti	mes and o	f all
	(A)	Botany		(B)	Anthropology	•		
	(C)	Zoology		(D)	Geology			
100	**	11 1	1:00 0			-		
199.	4	does anthropolog						٠
	(A) It is holistic and integrative in its approach (B) It uses statistics much effectively							
	(B)			٠.				
	(C)	It gives general						
	(D)	It predicts the f	uture of the h	ıman cuit ·	ure			
					:			
200.		h of the follow mation about hu		ribe how	anthropologis	ts primari	lly learn	new
	(A)	Field work		(B)	Laboratory ex	periments		
	(C)	Reading travele	ers accounts	(D)	Analysing mi	ssionary re	ports	
		•						

SPACE FOR ROUGH WORK

JSOBY/19 38

SPACE FOR ROUGH WORK

SEAL

JSOBY/19 40