Sl. No.:

|                    | - | • | LO |
|--------------------|---|---|----|
| Register<br>Number |   |   |    |

# 2019 PHARMACEUTICAL CHEMISTRY (PG Degree Std.)

Time Allowed: 3 Hours

[Maximum Marks: 300

**D.IPC/19** 

Read the following instructions carefully before you begin to answer the questions.

#### IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer, the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed, it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination, it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.
- 6. You will also encode your Question Booklet Number with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per Commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. Do not make any marking in the question booklet except in the sheet before the last page of the question booklet, which can be used for rough work. This should be strictly adhered.
- 11. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

SEAL

| 1. | Cala | mine contains — and zinc                                                           | oxide |                                                |
|----|------|------------------------------------------------------------------------------------|-------|------------------------------------------------|
|    | (A)  | Ferric oxide                                                                       | (B)   | Ferrous sulphate                               |
|    | (C)  | Ferrous fumarate                                                                   | (D)   | Titanium dioxide                               |
|    |      |                                                                                    |       |                                                |
| 2. |      | limit test for arsenic is standardized ciple of this test is a modification of the |       | using special type of apparatus. The basic     |
|    | (A)  | Sulphur test                                                                       | (3)   | Gutzeit test                                   |
|    | (C)  | Lead test                                                                          | (D)   | Heavy metals test                              |
|    |      |                                                                                    |       |                                                |
| 3. | Unit | s of radioactivity is                                                              |       |                                                |
|    | (A)  | Curie                                                                              | (B)   | Kg                                             |
|    | (C)  | Jules                                                                              | (D)   | Mg                                             |
|    |      |                                                                                    |       |                                                |
| 4. | Volu | ametric analysis is also called as                                                 |       |                                                |
|    | 1    | Titrimetric analysis                                                               | (B)   | Qualitative analysis                           |
|    | (C)  | Gravimetric analysis                                                               | (D)   | Semi quantitative analysis                     |
|    |      |                                                                                    |       |                                                |
| 5. |      | ntitative or semi quantitative test durity which is likely to be present is d      |       | l to identify and control small quantity of as |
|    | (A)  | Quality control test                                                               |       |                                                |
|    | (7)  | Limit test                                                                         |       |                                                |
|    | (C)  | Quantitative test                                                                  |       |                                                |
|    | (D)  | Identification test                                                                |       |                                                |
|    |      |                                                                                    |       |                                                |
| 6. | Zinc | sulphate is assayed by                                                             |       |                                                |
|    | (A)  | Non-aqueous titration                                                              |       |                                                |
|    | (B)  | Gravimetry method                                                                  |       |                                                |
|    | (C)  | Precipitation titration                                                            |       |                                                |
|    | (0)  | Complexometric titration                                                           | ·     |                                                |

| 7.      | Whic  | h of the following is used to relieve dental hypersensitivity?                                                                                                           |
|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| grave . | (A)   | Calcium phosphate                                                                                                                                                        |
|         | (B)   | Stannous fluoride                                                                                                                                                        |
|         | 10    | Strontium chloride                                                                                                                                                       |
|         | (D)   | Sodium fluoride                                                                                                                                                          |
|         |       |                                                                                                                                                                          |
| 8.      | Dibas | sic calcium phosphate is used ———                                                                                                                                        |
|         | (A)   | to treat dental caries                                                                                                                                                   |
|         | (B)   | to relieve dental hypersensitivity                                                                                                                                       |
|         | V.    | as dentifrice                                                                                                                                                            |
|         | (D)   | to fill cavities                                                                                                                                                         |
|         |       |                                                                                                                                                                          |
| 9.      | The r | number of ligand donor atoms to which the metal is directly bonded is defined as                                                                                         |
|         | (A)   | Co ordination sphere                                                                                                                                                     |
|         | (B)   | Co ordination polyhedron                                                                                                                                                 |
|         | VO    | Co ordination number                                                                                                                                                     |
|         | (D)   | Counter ion                                                                                                                                                              |
|         |       |                                                                                                                                                                          |
| 10.     | Ethyl | lene diamine tetra acetic acid ionises in ———— stages                                                                                                                    |
|         | (A)   | 1                                                                                                                                                                        |
|         | (B)   | 2                                                                                                                                                                        |
|         | (C)   | 3                                                                                                                                                                        |
| * *     | (1)   | $oldsymbol{4}$                                                                                                                                                           |
|         |       |                                                                                                                                                                          |
| 11.     |       | ——— is prepared by double decomposition reaction of hot ferrous sulphate and                                                                                             |
|         | sodiu | m fumarate                                                                                                                                                               |
|         | 11)   | Ferrous Fumarate                                                                                                                                                         |
|         | (B)   | Ferrous fluoride                                                                                                                                                         |
|         | (C)   | Ferrous glyconate                                                                                                                                                        |
|         | (D)   | Calcium Fumarate                                                                                                                                                         |
| DJP     | C/10  |                                                                                                                                                                          |
| DOT.    |       | 그 나는 사람들은 사람들이 가장 하는 것이 되었다. 그 바람들은 그는 사람들은 사람들이 가장 하는 것이 되었다. 그런 그렇게 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다면 사람들이 없는 것이 없다면 없는데 없다면 |

| 14. | rerr       | ic Ammonium citrate is assayed by —                      |               |                                   |
|-----|------------|----------------------------------------------------------|---------------|-----------------------------------|
| *   | (A)        | Iodometry titration                                      | (B)           | Precipitation titration           |
|     | (C)        | Non-aqueous titration                                    | (D)           | Gravimetry method                 |
|     |            |                                                          |               |                                   |
| 13. | Whic       | ch one of the following used as acid bas                 | e regu        | lator                             |
|     | (A)        | Sodium carbonate                                         | (B)           | Sodium bi carbonate               |
|     | 1          | Sodium citrate tablets                                   | (D)           | Sodium hydroxide                  |
|     |            | 이 [캠프로그 실패] [인도 보고다] [인                                  |               |                                   |
| 14. | Calc       | ium disodium edetate is used in the —                    | 27            |                                   |
|     | 1          | treatment of lead poisoning                              | (B)           | treatment of rheumatoid arthritis |
|     | (C)        | treatment of hyper acidity                               | (D)           | treatment of constipation         |
|     |            |                                                          |               |                                   |
| 15. | Sodi       | um chloride infection is used as                         |               |                                   |
| 10. | (A)        | Antacid                                                  | المحالة       | Electrolyte replenisher           |
|     | (C)        | Laxative                                                 | (D)           | Antidote                          |
|     | (0)        |                                                          |               |                                   |
| 16. | Codi       | um thio sulphate is used as                              |               |                                   |
| 10. | (A)        | Haematinic                                               |               | Antidote for cyanide poisoning    |
|     | (A)<br>(C) | Emetic                                                   | (D)           | Expectorant                       |
|     | (0)        | Minetic                                                  | (D)           | Expectorality                     |
|     |            |                                                          |               |                                   |
| 17. |            | nonium carbonate is used as                              | <del></del> . |                                   |
|     | (A)        | Hematinic                                                |               |                                   |
|     | (B)        | Emetic<br>Expectorant                                    |               |                                   |
|     | (D)        | Antidote                                                 | *             |                                   |
|     | (D)        | American                                                 |               |                                   |
| 10  |            |                                                          |               | na niman kalama                   |
| 18. |            | ch one is the chelating agent among the                  | e optio       | ns given below?                   |
|     | (A)        | Barium chloride                                          |               |                                   |
|     | (B)        | Silver Nitrate  Ethylono diamino totro acetic acid       | × 1           |                                   |
|     | (D)        | Ethylene diamine tetra acetic acid  Potassium dichromate |               |                                   |
|     | (D)        | rotassium dichromate                                     |               |                                   |

| 19. | The   | SI unit of co-efficient of viscosity is ————                                                                    |
|-----|-------|-----------------------------------------------------------------------------------------------------------------|
|     | (A)   | $ m kg~m^2S$                                                                                                    |
|     | (B)   | $ m kg~m^{-1}S$                                                                                                 |
|     | (6)   | $ m kg~m^{-1}S^{-1}$                                                                                            |
|     | (D)   | kg mS-                                                                                                          |
|     |       | 등 이번 보는 방향 모양하다 하다 하네 사람들이 되는 사람들이 보는 사람들이 되었다. 그리는 사람들이 되었다.                                                   |
| 20. | A liq | uid rises in a capillary tube. It is due to its ————                                                            |
|     | (A)   | Viscosity                                                                                                       |
|     | (B)   | Vapour Pressure                                                                                                 |
|     | (C)   | Density                                                                                                         |
|     |       | Surface tension                                                                                                 |
|     |       |                                                                                                                 |
| 21. | Vice  | osity of a liquid is a measure of ————                                                                          |
| 21. | (A)   | Repulsive forces between the liquid molecules                                                                   |
|     | (A)   | Frictional resistance                                                                                           |
|     | (C)   | Intermolecular force between the molecules                                                                      |
|     | (C)   | 그리다는 그 사람이 가다면 그녀를 가다고 하는 속하는 이 나는 사람들은 그리다는 생각하였다.                                                             |
|     | (D)   | Hydrogen bonding                                                                                                |
|     |       | 그 사람들이 내가 하다면 생각도 하는데 하다면 내가 되었다. 이 전에 되었다. 유럽 보다는 사람들                                                          |
| 22. | Asso  | ciation of molecule in water is due to ————                                                                     |
|     | (A)   | Surface tension                                                                                                 |
|     | (B)   | Viscosity                                                                                                       |
|     | Kor   | Hydrogen bonding                                                                                                |
|     | (D)   | Optical activity                                                                                                |
|     | 1 100 | 마다는 네트리아 모양을 살이 되어 하는 그리다 경우에 되는 모든 다음 나는 보다 하다.                                                                |
| 23. |       | greater the surface tension of the liquid, the higher is its capillary rise. This statement t suitable for ———— |
|     | (A)   | Water                                                                                                           |
|     | 9     | Mercury                                                                                                         |
|     | (C)   | Glycerin                                                                                                        |
|     | (D)   | Acetic acid                                                                                                     |
|     |       | 옷에 게 눈빛하게, 다느리가 되어 되어 뭐야? 이 아름이 느르지 않는 이번에는 목사였다.                                                               |

| 24. | Perc  | hloric acid is standadised using —— |          |                                         |
|-----|-------|-------------------------------------|----------|-----------------------------------------|
|     | (A)   | Sodium carbonate                    |          |                                         |
|     | (B)   | Potassium permanganate              |          |                                         |
|     | (C)   | Oxalic acid                         |          |                                         |
|     |       | Potassium hydrogen phthalate        |          |                                         |
|     |       |                                     |          |                                         |
| 25. |       | ——— is Aprotic solvent              |          |                                         |
|     | (A)   | Sulphuric acid                      |          | Chloroform                              |
|     | (C)   | Water                               | (D)      | Acetic acid                             |
|     |       |                                     |          |                                         |
| 26. | _     | show deviations from Raoult's       | Law      |                                         |
| ,   |       | Real solution                       | (B)      | Ideal solution                          |
|     | (C)   | Super critical solution             | (D)      | Unsaturated solution                    |
|     |       |                                     |          |                                         |
| 27. |       | states that, at constant ter        | nperatur | e, the volume of a fixed mass of gas is |
|     | inver | rsely proportional to its pressure. |          |                                         |
|     | (A)   | Charles's law                       | (3)      | Boyle's law                             |
|     | (C)   | Raoult's law                        | (D)      | Beer's law                              |
|     |       |                                     |          |                                         |
| 28. | Dum   | a's method is used to determine —   |          |                                         |
|     | (A)   | halogens                            | (B)      | sulphur                                 |
|     | (C)   | phosphorous                         |          | Nitrogen                                |
|     |       |                                     |          |                                         |
| 29. | Whic  | ch one of the following methods is  | used to  | quantitatively determine the amount of  |
|     | ņitro | gen?                                |          |                                         |
|     | (A)   | Rast method                         |          |                                         |
| p = | (B)   | Kjeldahl method                     |          |                                         |
|     | (C)   | Zeisel's method                     |          |                                         |
|     | (D)   | Herzig – Meyer method               | Eig 16   |                                         |

| 30.  | Option called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      | e of polari | sation by equal and opposite amounts are                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------|
|      | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Diastereo isomers                                                    |             |                                                                                         |
|      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Enantiomers                                                          |             |                                                                                         |
|      | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Geometrical isomers                                                  |             |                                                                                         |
|      | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cis-Trans isomers                                                    |             |                                                                                         |
| 31.  | or tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |             | or more different ways whether in one step<br>nge is same no matter by which method the |
|      | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hess law                                                             |             |                                                                                         |
|      | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gibb's law                                                           |             |                                                                                         |
|      | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Law of mass action                                                   |             |                                                                                         |
|      | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vant Hoff rules                                                      |             |                                                                                         |
| 32.  | Isome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | l formula b | ut differ in arrangement of atoms in space                                              |
|      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stereoisomers                                                        | (B)         | Optical isomers                                                                         |
|      | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Structural isomers                                                   | (D)         | Chiral                                                                                  |
| 33.  | The h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | neat of combustion can be determi                                    | ned experi  | mentally in a                                                                           |
|      | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Polarimeter                                                          | (B)         | Colorimeter                                                                             |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calorimeter                                                          | (D)         | Refractrometer                                                                          |
| 34.  | The called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 그 그 그리는 살았는 것이 되고 그 그들은 경기에 가는 것 같아. 이 그리고 그는 것이 없는 것이 없는 것이 없는 것이다. | with the he | eat changes caused by chemical reaction is                                              |
|      | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phyto chemistry                                                      |             |                                                                                         |
|      | The state of the s | Thermo chemistry                                                     |             |                                                                                         |
|      | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Photo chemistry                                                      |             |                                                                                         |
|      | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Electrochemical chemistry                                            |             |                                                                                         |
| DJPC | 2/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | 8           |                                                                                         |

| 35. | The    | The product of Molar Mass and specific refraction is called |            |                                               |  |  |  |
|-----|--------|-------------------------------------------------------------|------------|-----------------------------------------------|--|--|--|
|     | (A)    | Refractive Index                                            | ж          |                                               |  |  |  |
|     | (6)    | Molar Refraction                                            |            |                                               |  |  |  |
|     | (C)    | Reflective Index                                            |            |                                               |  |  |  |
|     | (D)    | Molar Reflection                                            |            |                                               |  |  |  |
|     |        |                                                             |            |                                               |  |  |  |
| 36. | The    | square of Refractive Index is used to                       | detect     |                                               |  |  |  |
|     | (A)    | Carbon bonds                                                |            |                                               |  |  |  |
|     | (B)    | Nitrogen bonds                                              |            |                                               |  |  |  |
|     | (C)    | Sulphur bonds                                               |            |                                               |  |  |  |
|     | 6      | Hydrogen – bond complexes                                   |            |                                               |  |  |  |
|     |        |                                                             |            |                                               |  |  |  |
| 37. | Refr   | active Index of water at room temper                        | ature is   |                                               |  |  |  |
|     | (A)    | 1.55                                                        | (B)        | 1.44                                          |  |  |  |
|     | 1      | 1.33                                                        | (D)        | 1.22                                          |  |  |  |
|     | · •    |                                                             |            |                                               |  |  |  |
| 38. | The    | absorption co-efficients for dextro a                       | nd levo c  | ircularly polarised light are different, this |  |  |  |
|     |        | rence is known as                                           |            |                                               |  |  |  |
|     |        | Circular dichroism                                          | (B)        | Circular Polarity                             |  |  |  |
|     | (C)    | Circular Asborptivity                                       | (D)        | Circular mobility                             |  |  |  |
|     |        |                                                             |            |                                               |  |  |  |
| 39. | A m    | athematical relation, connecting to                         | tal mola   | r energy of fluid (gas or liquid) with its    |  |  |  |
|     | volu   | me and temperature is called as                             |            |                                               |  |  |  |
|     |        | Caloric Equations of state                                  | (B)        | Overlap repulsion force                       |  |  |  |
|     | (C)    | Random packing modal                                        | (D)        | Cybotactic group model                        |  |  |  |
|     |        |                                                             |            |                                               |  |  |  |
| 40. | The    | average amount of energy required to                        | o dissocia | ate one mole is called as                     |  |  |  |
|     | (A)    | endothermic compound                                        |            | bond energy                                   |  |  |  |
|     | (C)    | exothermic compound                                         | (D)        | heat of reaction                              |  |  |  |
|     | s s "- |                                                             |            |                                               |  |  |  |

| 41. | The   | number of unpaired electrons in the ou    | termo  | st orbit is called as                      |
|-----|-------|-------------------------------------------|--------|--------------------------------------------|
|     | (A)   | positive ions                             | (B)    | negative ions                              |
|     | (C)   | valence electrons                         | (0)    | free radicals                              |
|     |       |                                           |        |                                            |
| 42. | Whi   | ch one of the following reagent is used v | widely | in the preparation of alcohols?            |
|     | (A)   | Volhard Reagent                           |        |                                            |
|     | (0)   | Grignard Reagent                          |        |                                            |
|     | (C)   | Benedict Reagent                          |        |                                            |
|     | (D)   | Kolbes Reagent                            |        |                                            |
|     |       |                                           |        |                                            |
| 43. | Diaz  | onium salts are used for preparations o   | of ——  |                                            |
|     | (1)   | Dye stuffs                                | (B)    | Aldehydes                                  |
|     | (C)   | Ketones                                   | (D)    | Carboxylic acids                           |
|     |       |                                           |        |                                            |
| 44. | m-Bi  | romoToluene isomer is best synthesised    | from   |                                            |
|     | (A)   | Bromination of toluene                    |        |                                            |
|     | (B)   | Methylation of Bromobenzene               |        |                                            |
|     | (6)   | Diazotisation reaction with Toluene       |        |                                            |
|     | (D)   | From Nitro benzene                        |        |                                            |
|     |       |                                           |        |                                            |
| 45. | The   | reaction of carboxylic esters with Grign  | ard re | agent is an excellent method for preparing |
|     | (A)   | 1° OH – (Primary alcohols)                |        |                                            |
|     | (B)   | 2° OH – (Secondary alcohols)              |        |                                            |
|     | VO    | 3° OH – (Tertiary alcohols)               |        |                                            |
|     | (D)   | Rectified spirit                          |        |                                            |
|     |       |                                           |        |                                            |
| 46. | Grigi | nard Reagent reacts with Water to give    |        |                                            |
|     | W     | Alkane                                    | (B)    | Alkene                                     |
|     | (C)   | Alkyne                                    | (D)    | Acetylene                                  |
| DJP | C/19  | 10                                        |        |                                            |
|     | J. 10 | 10                                        | 87 B   | 그 사이 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그   |

| 47.         | Whic       | Which one of the following has higher energies than the combining Atomic Orbitals (AOs)? |          |                           |  |  |  |
|-------------|------------|------------------------------------------------------------------------------------------|----------|---------------------------|--|--|--|
|             | (A)        | Bonding Molecular Orbitals (BMOs)                                                        |          |                           |  |  |  |
|             | <b>(6)</b> | Anti Bonding Molecular Orbitals (AB)                                                     | MOs)     |                           |  |  |  |
|             | (C)        | Atomic Molecular Orbitals (AMOs)                                                         |          |                           |  |  |  |
|             | (D)        | Linear Combination of Atomic Orbita                                                      | ls (LC   | AOs)                      |  |  |  |
|             |            |                                                                                          |          |                           |  |  |  |
| 48.         | Digox      | kin is inhibitor of                                                                      |          |                           |  |  |  |
|             | (A)        | Na+/K+ ATP-ase located in cardiac mu                                                     | ıltle    |                           |  |  |  |
|             | (B)        | FADP Inhibtion in cell                                                                   |          | 하시스는 시간 회사가 가는 시간다        |  |  |  |
|             | (C)        | Ca <sup>+</sup> ATP-ase located in cardiac cells                                         |          |                           |  |  |  |
|             | (D)        | Na <sup>+</sup> ATP-ase located in cardiac cells                                         | Ū.       |                           |  |  |  |
|             |            | 용하고 있는 항상이 하셨다고 있습니다.                                                                    |          |                           |  |  |  |
| 40          | In 00      | se of Digitalis purpurea, the cardiac ac                                                 | tivity i | is maximum with           |  |  |  |
| 49.         | (A)        | Odoro side – H                                                                           | (P)      | Digoxin                   |  |  |  |
|             | (A)        | Digitoxin                                                                                | (D) .    | Purpureo side – A         |  |  |  |
| •           | (0)        | Digitoxiii                                                                               | (2)      |                           |  |  |  |
| -0          | XI/I :     | h one of the following is 4–Quinolinone                                                  | . 3_Ca   | rboxylic acid derivative? |  |  |  |
| 50.         |            |                                                                                          | (B)      | Enoxacin                  |  |  |  |
|             | (A)        | Nalidixic acid                                                                           | (B)      | Norfloxacin               |  |  |  |
|             | (C)        | Cinoxacin                                                                                | <b>(</b> | Normoxaciii               |  |  |  |
|             |            |                                                                                          |          |                           |  |  |  |
| 51.         | Piper      | razine citrate is used in the treatment                                                  |          |                           |  |  |  |
|             | (A)        | Expectorant                                                                              | (B)      | Anti Tussive              |  |  |  |
|             | 10)        | Anthelmintics                                                                            | (D)      | Anti Emetics              |  |  |  |
|             |            |                                                                                          |          |                           |  |  |  |
| <b>52</b> . | Pyri       | nidine nucleus is present in which of the                                                | he follo | owing                     |  |  |  |
|             | (1)        | Pyrantel                                                                                 | (B)      | Niclosamide               |  |  |  |
|             | (C)        | Thio bendazole                                                                           | (D)      | Pyrazi Quantel            |  |  |  |
|             |            |                                                                                          |          |                           |  |  |  |
| 53.         | Diet       | hyl carbamazine citrate comes under w                                                    | hich c   | lass of Antholmintics     |  |  |  |
|             | (A)        | Benzimidazole                                                                            | (B)      | Nitro derivatives         |  |  |  |
|             | (C)        | Amides                                                                                   | (0)      | Piperazines               |  |  |  |

54. S-Enantiomer of ofloxacin is called as

(A) Spar floxacin

Levo floxacin

(C) Lome floxacin

(D) Balo floxacin

55. Which one of the following is an azole antifungal agent?

(A) Sordarin

(B) Butenafine

Ketoconazole

(D) Griseofulvin

56. The mechanism of action of Trimethoprim.

- (A) Blocks dihydrofolate reductase
- (B) Blocks t-RNA binding to m-RNA
- Blocks electron transport of bacteria
- (D) Blocks synthesis of dihydropteroic acid

57. The first marketed anti bacterial drugs were

(A) Cephalo sporins

(B) Pencillins

(C) Amoxy cillins

Sulfanilamide

58. Fill the Electrophilic aromatic substitution reaction:

$$(A) \xrightarrow{CH_3} \xrightarrow{H_2SO_4, SO_3} \xrightarrow{CH_3} + \xrightarrow{SO_3H} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{SO_3H} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{SO_3H} \xrightarrow{CH_3} \xrightarrow{$$

59. Which of the following antifungal should not be used during pregnancy?

- (A) Isavuconazonium sulfate
- (B) Nafti fine

(C) Butena fine

(D) Terbena fine

| 60. | Whic | th of the following is a pyrimidine of | derivative?  |                                 |
|-----|------|----------------------------------------|--------------|---------------------------------|
|     | (A)  | Proguanil HCl                          |              |                                 |
|     |      | Pyrimethamine                          |              |                                 |
|     | (C)  | Cycloguanil Pamoate                    |              |                                 |
|     | (D)  | Chlorophenyl guanidine                 |              |                                 |
|     |      |                                        |              |                                 |
| 61. | What | t could be the starting matial for th  | ne synthesi  | is of Phenobarbital?            |
|     |      | Benzyl chloride                        |              |                                 |
|     | (B)  | Ethyl Methyl Ketone                    |              |                                 |
|     | (C)  | Phenyl Acetamide                       |              |                                 |
|     | (D)  | Phenyl Acetyl Chloride                 |              |                                 |
|     |      |                                        |              |                                 |
| 62. | Trim | ethoprim exhibits — wh                 | nich activit | <b>y</b> ?                      |
|     | (A)  | Antihistaminic                         |              |                                 |
|     | (B)  | Anthelmintics                          |              |                                 |
|     |      | Anti bacterial                         |              |                                 |
|     | (D)  | Anti depressant                        |              |                                 |
|     |      |                                        |              |                                 |
| 63. | Whic | h one of the following is osmotic di   | uretic used  | d in treatment of hypertension? |
|     | (A)  | Mannitol                               | (B)          | Sorbitol                        |
|     | (C)  | Acetazolamide                          | (D)          | Chlorthiazide                   |
|     |      |                                        |              |                                 |
| 64. | Meta | zocine is unsuitable for usage beca    | use of its   |                                 |
|     |      | Psychomimetic side effects             | (B)          | Neurologic side effects         |
|     | (C)  | Nephrologic side effects               | (D)          | Hepatic side effects            |

| 65. | Para  | ıldehyde is used as                    |                |                                            |
|-----|-------|----------------------------------------|----------------|--------------------------------------------|
| /.  | (A)   | Anti depresents                        |                |                                            |
|     |       | Sedative                               |                |                                            |
|     | (C)   | Anti convulsant                        |                |                                            |
|     | (D)   | Anti histamine                         |                |                                            |
|     |       |                                        |                | 보는 되면 하고 있는 아이트 사람들이 되었다.                  |
| 66. | Thio  | pental sodium is administered throu    | ıgh ——         | route.                                     |
|     | (A)   | INNALATCON                             |                |                                            |
|     | (0)   | INTRA VENOKS                           |                |                                            |
|     | (C)   | ORAL                                   |                |                                            |
|     | (D)   | TOPICAL                                |                |                                            |
|     |       |                                        |                |                                            |
| 67. |       | eine is derived from morphine by dis   | placemer       | nt of the hydrogen atom of the phenolic-OH |
|     | (A)   | $-NH_2$                                |                |                                            |
|     | (B)   | $-\mathrm{C}_2\mathrm{H}_5$            |                |                                            |
|     | (C)   | -СНО                                   |                |                                            |
|     | 10)   | $-\mathrm{CH}_3$                       |                |                                            |
|     |       |                                        |                |                                            |
| 68. | Sulp  | honamids are generally used to prod    | luce ——        | effect                                     |
|     | (1)   | Antibacterial                          |                |                                            |
|     | (B)   | Antibiotics                            |                |                                            |
|     | (C)   | Anti malarial                          |                |                                            |
|     | (D)   | Antihistamine                          | The Automotive |                                            |
|     |       |                                        |                |                                            |
| 69. | In th | ne Phenobarbital aray with N/10n N     | aOH Phe        | roharbital acts as                         |
|     | (A)   | Weak Mono basic acid                   | (B)            | Weak bibasic acid                          |
| 6 · | (C)   | Strong acid                            | (D)            | ester                                      |
|     |       |                                        |                |                                            |
| 70. | Mafe  | enide belongs to the category of which | h nucleus      | s?                                         |
|     | (1)   | Sulphonamide                           | (B)            | STEROID                                    |
|     | (C)   | PHRIDINE                               | (D)            | PHENANTHARENE                              |
| DJP | C/19  | 그런 하는 나는 내가 가게 가는 것이다.                 | 14             |                                            |

| 71.         | VVIIIC | in one of the following is a CNS still the | and an     | aloid                                         |
|-------------|--------|--------------------------------------------|------------|-----------------------------------------------|
|             | (A)    | Guinine                                    | (B)        | CINCHONINE                                    |
|             | 10     | STRYCHNINE                                 | (D)        | Ephedrine                                     |
|             |        |                                            |            |                                               |
| 72.         |        | refers to the specific type of             | of instr   | umentation where in the molar elipticity of   |
|             | an op  | otically active substance is measured      |            |                                               |
|             | (A)    | Optical rotary dispersion                  | (B)        | IR Spectrometer                               |
|             |        | Circular dichroism                         | (D)        | Mass spectrum                                 |
|             |        |                                            |            |                                               |
| 73.         | TCA    | cycle is commonly known as ———             | -          |                                               |
|             | (A)    | Ko Warburg-Lipman Pathway                  | (B)        | .Kreb's cycle                                 |
|             | (C)    | EMP Pathway                                | (D)        | Cori cycle                                    |
| \           |        |                                            |            |                                               |
| 74.         | A sol  | lution of cholesterol in chloroform w      | hen tre    | eated sulphuric acid and acetic anhydride     |
|             | gives  | a green colour. This reaction is called    | l ——       |                                               |
|             | (A)    | Salkowski reaction                         | (B)        | Mayer's reaction                              |
|             | B      | Libermann-Burchard reaction                | (D)        | Hager's reaction                              |
|             |        |                                            |            |                                               |
| <b>75</b> . | Oest   | rone may be reduced to —————               | — by ca    | atalytic hydrogenetion, by LiAlH <sub>4</sub> |
|             | (A)    | Oestrogen                                  | (B)        | androgen                                      |
|             | (C)    | Oestrotriol                                | <b>(D)</b> | Oestrodiol                                    |
|             |        |                                            |            |                                               |
| 76.         | Cort   | isone is used in the treatment of          |            |                                               |
|             | (A)    | Rheumatiod arthritis                       | (B)        | Goitre                                        |
|             | (C)    | Heart disease                              | (D)        | Diabetis mellitus                             |

| 77. | Quii  | nine on controlled oxidation with chrom                                                                                                          | ic aci | d gives                            |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------|
|     | M     | Quininic acid and meroquinene                                                                                                                    |        | 그는 일반 시간의 기일 있었다.                  |
|     | (B)   | Laiponic acid and quinine acids                                                                                                                  |        |                                    |
|     | (C)   | Quinine acids and 4-methyl-6-methox                                                                                                              | ky qui | noline                             |
|     | (D)   | Mosoquinene and laiponic acid                                                                                                                    |        |                                    |
| 78. | The   | nature of carbon skeleton in a Nitrogen                                                                                                          | eous   | heterocyclic ring is determined by |
|     | (A)   | Zerehinoff's method                                                                                                                              |        |                                    |
|     | (B)   | Zeisol's method                                                                                                                                  |        |                                    |
|     | (C)   | Clarke's method                                                                                                                                  |        |                                    |
|     | VI)   | Hofmann's exhaustive methylation m                                                                                                               | ethod  |                                    |
|     |       |                                                                                                                                                  |        |                                    |
| 79. | The   | number of asymmetric carbon counters                                                                                                             | in Ep  | hedrine is                         |
|     | (1)   | 2                                                                                                                                                | (B)    | 4                                  |
|     | (C)   | 8                                                                                                                                                | (D)    | 16                                 |
|     |       |                                                                                                                                                  |        |                                    |
| 80. | Trop  | oine and pseudotropine are optically —                                                                                                           |        | because of                         |
|     | (A)   | inactive, absence of chiral centres                                                                                                              |        |                                    |
|     | (B)   | active, two chiral centres                                                                                                                       |        |                                    |
|     | (C)   | active, internal compensation                                                                                                                    |        | 보고하다가 됐다면 맛이 없는 선생님                |
|     | 100   | inactive, internal compensation                                                                                                                  |        |                                    |
|     |       |                                                                                                                                                  |        |                                    |
| 81. | Nico  | tine when oxidised with dichromate-sulp                                                                                                          | ohuri  | c acid, if forms                   |
|     | W     | Nicotinic acid                                                                                                                                   | (B)    | Pyridine – 2 – carboxylic acid     |
|     | (C)   | Pyridine – 4 – carboxylic acid                                                                                                                   | (D)    | Benzoic acid                       |
|     |       |                                                                                                                                                  |        |                                    |
| 82. | The p | presence of N-methyl group and their nu                                                                                                          | ımbei  | rs may be determined by means of   |
|     | (A)   | Hofmann's exhaustive methylation me                                                                                                              |        |                                    |
|     | (B)   | Van Braun's method                                                                                                                               |        |                                    |
|     | 1     | Herzig-meyer method                                                                                                                              | . *    |                                    |
|     | (D)   | Emde degradation method                                                                                                                          |        |                                    |
|     |       | 그는 그는 그는 이 이 이 이 그는 것이 되었다. 그는 그 이 이 이 이 이 이 이 이 이 이 이 없어 그는 것이다. 그는 것이 없는 것이다. 그는 것이 없어 그렇게 되었다. 그는 것이다. 그는 |        |                                    |

| 83.     | The  | blue shift means                                 |        | 너 뭐하다. 이 시네티얼마 나라하다                        |
|---------|------|--------------------------------------------------|--------|--------------------------------------------|
|         |      | A shift of $\lambda_{max}$ to shorter wavelength |        |                                            |
|         | (B)  | Increase in the intensity of an absorpt          | ion    |                                            |
|         | (C)  | A shift of $\lambda_{\max}$ to longer wavelength |        |                                            |
|         | (D)  | Decrease in the intensity of an absorpt          | tion   |                                            |
| 84.     | In o | prism monochromator the working princ            | pinlo  | io                                         |
| 04.     | ma   | prism monochromator the working princ            | ipie   | 15                                         |
|         | (A)  | Reflection                                       | (B)    | Scattering                                 |
|         | (C)  | Re-inforcement                                   |        | Dispersion                                 |
|         |      |                                                  |        |                                            |
| 85.     | Abso | rption of light in the ultraviolet regions       | of the | e spectrum is due to the presence of a/an  |
|         | (A)  | $\sigma$ -electrons                              |        | chromophore                                |
|         | (C)  | auxochromes                                      | (D)    | electrolytes                               |
| · · · · |      |                                                  |        |                                            |
| 86.     | -    | law is defined as the intensity                  | y of a | a beam monochromatic radiation decreases   |
|         | expo | nentially with the number of absorbing r         | mole   | cules.                                     |
|         | A)   | Beer's                                           | (B)    | Lambert's                                  |
|         | (C)  | Brag's                                           | (D)    | Hess                                       |
|         |      |                                                  |        |                                            |
| 87.     | Quin | nine is highly fluorescent in 0.05 m sul         | phur   | ic acid but not in 0.1 m hydrochloric acid |
|         | beca | use of                                           |        |                                            |
|         | (1)  | Collisional quenching                            |        |                                            |
|         | (B)  | Static quenching                                 |        |                                            |
|         | (C)  | Tyndall scatter                                  |        |                                            |
|         | (D)  | Rayleigh scatter                                 | r      |                                            |
|         |      |                                                  |        |                                            |

| 88. | The   | efficiency of a chromatography columi  | ı is mea | asured by its number of                    |
|-----|-------|----------------------------------------|----------|--------------------------------------------|
|     | (A)   | Elution                                | (8)      | Theoretical plates                         |
|     | (C)   | Mobile phase                           | (D)      | Compounds in mixture                       |
| 89. | The   | upper surface of a column should be p  | rotecte  | d by using ———— in gel filteration.        |
|     | (A)   | Adsorbents                             | (B)      | Charcoal                                   |
|     |       | Filter paper                           | (D)      | Absorbents                                 |
|     |       |                                        |          |                                            |
| 90. | Mech  | nanism of separation in TLC of paraffi | n oil or | silicon oil coated on silica is            |
| i e | (1)   | Reversed phase partition               | (B)      | Adsorbtion                                 |
|     | (C)   | Reversed phase absorbance              | (D)      | Ion exchange                               |
|     |       |                                        | , X      |                                            |
| 91. | *Whic | h of the following developing reagen   | it is us | ed for visualization of amino acid in thir |
|     | layer | chromatography?                        |          |                                            |
|     | (A)   | Iodine vapour                          | (B)      | Bratton-Marshall reagent                   |
|     |       | Ninhydrin reagent                      | (D)      | Dragendroff's reagent                      |
|     |       |                                        |          |                                            |
| 92. |       | can be made visible through            | exposur  | re of the TLC plate to iodine vapor.       |
|     | (A)   | electrolytes                           | (B)      | organometallic compounds                   |
|     | VI    | organic analytes                       | (D)      | inorganic analytes                         |
|     |       |                                        |          |                                            |
| 93. | The r | nost common iodine isotope used for b  | iologica | al arrays                                  |
|     | (A)   | 131 <sub>I</sub>                       | (B)      | $^{125}\mathrm{I}$                         |
|     | (C)   | <sup>124</sup> I                       | (D)      | 136 <sub>I</sub>                           |
|     |       |                                        |          |                                            |

| 94. | IR al | osorption spectra are due to changes  | in ——      | energy accompanied by change in        |
|-----|-------|---------------------------------------|------------|----------------------------------------|
|     | rotat | ional energy.                         |            |                                        |
|     | (A)   | electronic                            |            |                                        |
|     |       | vibrational                           |            |                                        |
|     | (C)   | nuclear spin                          |            |                                        |
|     | (D)   | molecular charge                      |            |                                        |
|     |       |                                       |            |                                        |
| 95. | In IF | R, two atoms (non bonded) connected   | d to a cer | ntral atom move up and move down below |
|     | the p | lane is called ———— vibration         |            |                                        |
|     | (A)   | Twisting                              | (B)        | Scissoring                             |
|     | W/S   | Wagging                               | (D)        | Rocking                                |
|     |       |                                       |            |                                        |
| 96. | A cor | mmon detector employed to detect IF   | R radiatio | on is the                              |
|     | (A)   | Photovoltanic cell                    | (B)        | Photomultiplier                        |
|     | (C)   | Crystal                               | VA .       | Thermocouple                           |
|     |       |                                       |            |                                        |
| 97. | Defo  | rmation vibrations in IR spectroscop  | y is calle | ${ m ed}$ as                           |
|     |       | bending vibrations                    |            |                                        |
|     | (B)   | symmetric vibrations                  |            |                                        |
|     | (C)   | asymmetric vibrations                 |            |                                        |
|     | (D)   | stretching vibrations                 |            |                                        |
|     |       |                                       |            |                                        |
| 98. | In N  | MR, the inter action between differen | ent hydro  | gens in a molecule is                  |
|     | (A)   | chemical shift                        | (B)        | coupling constant                      |
|     | (C)   | spin-spin coupling                    | (D)        | deshielding                            |
|     |       |                                       |            |                                        |

| 33.  | Sour       | um carbonate added to not solution o   | 1 pnosp | noric acid gives                                               |
|------|------------|----------------------------------------|---------|----------------------------------------------------------------|
|      | <b>(1)</b> | Disodium hydrogen phosphate            | (B)     | Sodium phosphoric acid                                         |
|      | (C)        | Sodium bicarbonate                     | (D)     | Sodium acid phosphate                                          |
|      |            |                                        |         |                                                                |
| 100. | -          | is dimethyl polysiloxane of g          | rade 20 | 0                                                              |
|      | (A)        | Sulphurated potash                     |         | Dimethicone                                                    |
|      | (C)        | Potash                                 | (D)     | Kaolin                                                         |
|      |            |                                        |         |                                                                |
| 101. | -          | are used for removing toxic s          | ubstan  | ces from GIT, caused due to poisonina or in                    |
|      | diarr      |                                        | ,       |                                                                |
|      | (A)        | Acidifiers                             | (B)     | Adsorbents                                                     |
|      | (C)        | Antacids                               | (D)     | Laxatives                                                      |
|      |            |                                        |         |                                                                |
| 102. | From       | the following identify the chemical fo | ormula  |                                                                |
|      | (A)        | $\mathrm{mg_6Al_2(OH)_{16}CO_3.4H_2O}$ | (3)     | $\text{Al}_5  \text{mg}_{10} (\text{OH})_{31} (\text{SO}_4)_2$ |
|      | (C)        | $Al_2 mg_6 (CO_3)_2 (OH)_{14}.4H_2O$   | (D)     | ${ m CaCO_3}$                                                  |
|      |            |                                        |         |                                                                |
| 103. |            | ——— is obtained when magnesium         | chloric | le reacts with sodium hydroxide                                |
|      | (A)        | Magnesium phosphate                    | (B)     | Manganese oxide                                                |
|      | (C)        | Aluminium hydroxide                    | (6)     | Magnesium hydroxide                                            |
|      |            |                                        |         |                                                                |
| 104. | Epsoi      | m salt is known as                     |         |                                                                |
|      | (A)        | Calcium carbonate                      | (B)     | Calcium hydroxide                                              |
|      | 5          | Magnesium sulphate                     | (D)     | Magnesium carbonate                                            |
|      |            |                                        |         |                                                                |
| 105. | Roche      | elle salt is known as                  |         |                                                                |
|      | (A)        | Sodium sulphate                        | (3)     | Sodium potassium tartrate                                      |
|      | (C)        | Sodium phosphate                       | (D)     | Bismuth sub carbonate                                          |
|      | 4.56       |                                        |         |                                                                |

| 106. |       | h of the following is used to preve-<br>test for Iron? | nt the pre   | cipitation of Iron as ferric hydroxide in th |
|------|-------|--------------------------------------------------------|--------------|----------------------------------------------|
|      | (A)   | Fumaric acid                                           | (B)          | Acetic acid                                  |
|      |       | Citric acid                                            | (D)          | Tartaric acid                                |
| 107. | Magr  | nesium sulphate is uses as                             |              |                                              |
|      | (A)   | Antacid                                                | (B)          | Saline purgative                             |
|      | (C)   | Electrolyte replemishes                                | (D)          | Dental product                               |
| 108. | Whic  | h of the following injections is used                  | l for the di | agnosis of hematological disorders?          |
|      | (A)   | Gold (198Au) injection                                 |              |                                              |
|      | (B)   | Cyanocobalamin (60Co)                                  |              |                                              |
|      |       | Ferric citrate (59Fe) injection                        |              |                                              |
|      | (D)   | Sodium iodide (131I) injection                         |              |                                              |
|      |       |                                                        |              |                                              |
| 109. | Sodiu | um orthophosphate solution is used                     | l in the —   |                                              |
|      | (A)   | Study of sodium exchange                               |              |                                              |
|      | (B)   | Extra cellular water measuremen                        | nt           |                                              |
|      | (0)   | Treatment of polycythemia                              |              |                                              |
|      | (D)   | Determination of myocardial bloc                       | od flow      |                                              |
|      |       |                                                        |              |                                              |
| 110. | Rubio | dium chloride injection is used in t                   | he ———       | <del></del>                                  |
| •    | (A)   | determination of myocardial bloo                       | d flow       |                                              |
|      | (B)   | study of thyroid uptake                                |              |                                              |
|      | (C)   | treatment of polycythemia                              |              |                                              |
|      | (D)   | study of potassium exchange                            |              |                                              |
|      |       |                                                        |              |                                              |
| 111. |       | is a material used for clean                           | ing of teet  | h and adjacent gums                          |
|      | (A)   | Dental caries                                          |              |                                              |
|      | (B)   | Oral Antiseptic                                        |              |                                              |
|      | (0)   | Dentifrice                                             |              |                                              |
|      | (D)   | Dental hypersensitivity                                |              | 나는 하는 사람이 없는 그래?                             |

| 112. |       | ———— can be obtained by careful n                                          | eutraliza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion of hydrochloric acid with lime.               |
|------|-------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|      | (A)   | Calcium gluconate                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calcium chloride                                   |
|      | (C)   | Potassium chloride                                                         | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sodium chloride                                    |
|      |       |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 113. | Assa  | y of Ammonium chloride is by                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (A)   | Complexometry                                                              | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Non-aqueous titration                              |
|      | (C)   | Acidimetry                                                                 | <b>(6)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Modified Volmard's method                          |
| 114. | Calc  | ium hydroxide is assayed by                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (A)   | Acidimetry                                                                 | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alkalimetry                                        |
|      |       | Complexometric titration                                                   | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Non-aqueous titration                              |
|      |       |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 115. |       | ne assay of aluminium hydroxide ge<br>in which conditions only the complex | The state of the s | is added to maintain an alkalin<br>on is complete. |
|      | (A)   | Disodium edetate                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (B)   | Ammonia ammonium chloride                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      |       | Hexamine                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (D)   | Magnesium oxide                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      |       |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 116. | In co | ompound sodium chloride solution, so                                       | dium is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | determined by ————.                                |
|      | (A)   | Spectro photometry                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (B)   | Flame photometry                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (C)   | Fluorimetry                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (D)   | Turbidometry                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      |       |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 117. | Calci | ium gluconate is assayed by ———                                            | <del></del> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
|      | (A)   | Precipitation titration                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (B)   | Non-aqueous titration                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (C)   | Gravimetry method                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|      | (1)   | Complexometric titration                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 회사인 하게 가득하다는 것 같아.                                 |

| 118. | Whic   | h of the following is used as oral antiseptic?                              |
|------|--------|-----------------------------------------------------------------------------|
|      | (A)    | Sodium perborate                                                            |
|      | (B)    | Sodium Thio Sulphate                                                        |
|      | (C)    | Sodium Sulphite                                                             |
|      | (D).   | Sodium Methoxide                                                            |
|      |        |                                                                             |
| 119. |        | has been the traditional cleaning-polishing agent for most tooth pastes and |
|      | tooth  | powders                                                                     |
|      | (A)    | Sodium Carbonate                                                            |
|      | -OS)   | Calcium Carbonate                                                           |
|      | (C)    | Calcium Sulphate                                                            |
|      | (D)    | Sodium bi carbonate                                                         |
|      |        |                                                                             |
| 120. | Calci  | um chloró hypochlorite is known as ———                                      |
|      | (A)    | Epsom salt                                                                  |
|      | (B)    | Precipitated chalk                                                          |
|      | (0)    | Bleaching powder                                                            |
|      | (D)    | Lime salt                                                                   |
| 1 m  |        |                                                                             |
| 121. | Britis | sh anti lewisite (B.A.L) is                                                 |
|      | (A)    | Leucovarin calcium                                                          |
|      | (B)    | D. Penicillamine                                                            |
|      |        | Dimencaprol                                                                 |
|      | (D)    | Editic acid                                                                 |
|      |        |                                                                             |
| 122. | The S  | SI unit of surface tension is ———                                           |
|      | (A)    | dyne cm                                                                     |
|      | (B)    | $ m dyne^{-1}~cm$                                                           |
|      | (C)    | Nm                                                                          |
|      | -5     | $\mathrm{Nm}^{-1}$                                                          |
|      |        |                                                                             |

| 125. | Gly         | cerol has an unusually high viscosity                               | mainly    | because of its high capacity to form                                     |
|------|-------------|---------------------------------------------------------------------|-----------|--------------------------------------------------------------------------|
|      | (A)         | Free radicals                                                       | (B)       | Ionic bonds                                                              |
|      | WAY.        | Hydrogen bonds                                                      | (D)       | Binary compounds                                                         |
| 124. | As t        | he temperature of a liquid increases,                               | its visco | eity                                                                     |
|      | (A)\$       |                                                                     | (B)       | increases or decreases                                                   |
|      | (C)         | remains same                                                        |           | decreases                                                                |
|      | (0)         | Temams same                                                         | . (20)    | uecreases                                                                |
| 125. | Osn         | notic pressure of a solution is a/an —                              |           |                                                                          |
|      | (A)         | Colloidal property                                                  | (B)       | electrochemical property                                                 |
|      |             | colligative property                                                | (D)       | catalytic property                                                       |
| 126. | In a        | cetone – chloroform system the deviat                               | ion from  | Raoult's law is ———                                                      |
|      | (A)         | positive                                                            | 10)       | negative                                                                 |
|      | (C)         | zero                                                                | (D)       | positive and negative                                                    |
|      |             |                                                                     |           |                                                                          |
| 127. | In m        | ass spectra the most intense peak is l                              | known a   | s                                                                        |
|      | <b>(1)</b>  | Base peak                                                           | (B)       | Hydrocarbon peak                                                         |
|      | (C)         | Fragment ion peak                                                   | (D)       | Rearrangement peak                                                       |
|      |             |                                                                     |           |                                                                          |
| 128. | Peop<br>(A) | ble stranded in lifeboats on the ocea<br>Surface tension is too low | an canno  | ot drink the seawater. The reason is its<br>Osmotic pressure is too high |
|      | (C)         | Viscosity is too high                                               | (D)       | Freezing temperature is too high                                         |
| 129. | Whic        | ch one is a colligative property                                    |           |                                                                          |
| •    |             | Osmotic pressure                                                    | (B)       | Molecular weight                                                         |
|      | (C)         | Surface tension                                                     | (D)       | Atomic volume                                                            |
|      |             |                                                                     |           |                                                                          |

| 130. | Nitro      | ous oxide is manufactured by the action of heat on                                      |
|------|------------|-----------------------------------------------------------------------------------------|
|      | (A)        | Sodium nitrate                                                                          |
|      | (B)        | Potassium nitrate                                                                       |
|      |            | Ammonium nitrate                                                                        |
|      | (D)        | Ammonium carbonate                                                                      |
| ,    |            |                                                                                         |
| 131. | In te      | sting oxygen for carbon di-oxide, the gas is passed slowly through a 3% solution of     |
|      | (A)        | Calcium chloride                                                                        |
|      | (B)        | Magnesium chloride                                                                      |
|      |            | Barium hydroxide                                                                        |
|      | (D)        | Ammonium hydroxide                                                                      |
|      |            |                                                                                         |
| 132. | The        | change in enthalpy that take place when one mole of the compound is farmed from its     |
|      | elem       | ents. If is usually represented by                                                      |
|      | (A)        | $\Delta H_{\mathrm{f}}$ (B) $\Delta H$                                                  |
|      | (C)        | $\Delta^{\circ}\mathrm{H}^{\circ}$ (D) $\Sigma\mathring{\Delta}\mathrm{H}^{\circ}$      |
|      |            |                                                                                         |
| 199  | Tho        | separation of racemic modification into enantiomers is called                           |
| 133. |            | Revolution                                                                              |
|      | (A)<br>(B) | Regression                                                                              |
|      |            | Resolution                                                                              |
|      | (D)        | Recession                                                                               |
|      | (D)        | recession                                                                               |
| 134. |            | ——— equation gives variation of partial vapour pressure of the constituents of a liquid |
| 134. | mixt       | ure with the variation of the composition in the liquid phase                           |
|      | (A)        | Nernst (B) Gibb's                                                                       |
|      |            | Duhem-Margules (D) Raoult's                                                             |
|      |            | 그 경기는 그 생물이 그 사람이 가면 가장하는 사람들이 있는 것이 되었다. 그 사람들이 되었다면 가장 그는 그 가게 하는 것은 것이다.             |

| 135. | A car        | bon atom which is bonded to four different group is called as                                                                                      |
|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|      | <b>(1)</b>   | Asymmetric carbon atom                                                                                                                             |
|      | (B)          | Symmetric carbon atom                                                                                                                              |
|      | (C)          | Optical isomerism                                                                                                                                  |
|      | (D)          | Geoisomerism                                                                                                                                       |
|      |              |                                                                                                                                                    |
| 136. |              | h equation is the basis for the relationship between voltage generated and relevant entration at each electrode?                                   |
|      | (A)          | Polynomial equation                                                                                                                                |
|      | (B)          | Simultaneous equation                                                                                                                              |
|      |              | Nernst equation                                                                                                                                    |
|      | (D)          | Brag's equation                                                                                                                                    |
|      |              |                                                                                                                                                    |
| 137. | A spe        | cial type of functional isomerism in which the isomers are in dynamic equilibrium with other                                                       |
|      | (A)          | Metamerism                                                                                                                                         |
|      | <b>B</b> ) . | Tautomerism                                                                                                                                        |
|      | (C)          | Enantiomers                                                                                                                                        |
|      | (D)          | Optical isomers                                                                                                                                    |
|      |              | 그래, 그는 이 말이라는 먹다. 나는 말이들이 아니라지만, 그렇다 이상 그리라는 그리다.                                                                                                  |
| 138. | The p        | phenomenon in which one of the products itself acts as a catalyst is known as                                                                      |
|      | (A)          | Positive Catalysis                                                                                                                                 |
|      | (B)          | Negative Catalysis                                                                                                                                 |
|      | S            | $\operatorname{Auto}-\operatorname{Catalysis}$                                                                                                     |
|      | (D)          | Promoter                                                                                                                                           |
|      |              | 엄마하는 나는 바다 그 사람이 하네요? 그리다는 그리는 그리는 그리고 하는 것이 없다.                                                                                                   |
| 139. |              | angle of rotation of the plane polarized light produced by a liquid with a solution of ne 1 ml and 1 gm of substance with 1 dm length is called as |
| •    | (A)          | Optical activity                                                                                                                                   |
|      | (P)          | Specific rotation                                                                                                                                  |
|      | (C)          | Rotatory action                                                                                                                                    |
|      | (D)          | Specific absorbance                                                                                                                                |
|      |              |                                                                                                                                                    |
| DJPC | /19          | 26                                                                                                                                                 |

| 140. |                     | change in enthalpy that takes place we<br>ent is defined as          | hen on   | e mole of the compound is formed from its   |
|------|---------------------|----------------------------------------------------------------------|----------|---------------------------------------------|
|      |                     | Heat of formation                                                    | (B)      | Heat of solution                            |
|      | a(C)                | Heat of combustion                                                   | (D)      | Heat of neutralisation                      |
|      |                     |                                                                      |          |                                             |
| 141. | The                 | temperature at which the two conjug                                  | rate sol | ution merge into one another to form one    |
| 141. |                     | r is called as                                                       | ,000 001 |                                             |
|      | (A)                 | conjugate system                                                     | (B)      | critical minimum temperature                |
|      | (C)                 | tie line                                                             | 1        | critical solution temperature               |
|      |                     |                                                                      |          |                                             |
| 142. |                     | n a — aromatic amine is di<br>sodium nitrite, Diazonium salts are fo |          | in cold aqueous mineral acid and treated    |
|      | (A)                 | Primary                                                              | (B)      | Secondary                                   |
|      | (C)                 | Tertiary                                                             | (D)      | Quarternary                                 |
|      |                     |                                                                      |          |                                             |
| 143. | Vitar<br>calle      |                                                                      | th antii | mony trichloride gives Blue colour. This is |
|      | $\langle A \rangle$ | Carr-Price test                                                      | (B)      | Wagners test                                |
|      | (C)                 | Fehling test                                                         | (D)      | Borntragers test                            |
|      |                     |                                                                      |          |                                             |
| 144. | The 1               | unit for dipole moment is                                            |          |                                             |
|      | (A)                 | amu                                                                  | (B)      | esu                                         |
|      | 16                  | debye, D                                                             | (D)      | centipoise, CP                              |
|      |                     |                                                                      |          |                                             |
| 145. | LCA                 | O' stands for ———.                                                   |          |                                             |
| 110. | (A)                 | Least Combination of Atomic Orbita                                   | ıls      |                                             |
|      | (B)                 | Last Combination of Atomic Orbital                                   |          |                                             |
|      |                     | Linear Combination of Atomic Orbit                                   | tals     |                                             |
|      | (D)                 | Largest Combination of Atomic Orb                                    | itals    |                                             |
|      |                     |                                                                      |          |                                             |
| 146. | The                 | unit 'amu' means                                                     |          |                                             |
| 140. | (A)                 | Average mass unit                                                    | (B)      | Average molecule unit                       |
|      |                     | Atomic mass unit                                                     | (D)      | Atomic molecule unit                        |
| 100  | (                   | TATOMAN AND MAKE                                                     | (/       |                                             |

| 147. | Hete            | erocyclic compounds are mainly synthes                                | sised f | rom                                                                                                                                                                                                                             |
|------|-----------------|-----------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | (A)             | Dimethyl Sulfoxide (DMSO)                                             |         |                                                                                                                                                                                                                                 |
|      | (B)             | Tri Fluoro Acetic acid (TFA)                                          |         |                                                                                                                                                                                                                                 |
|      | (C)             | Poly Ethylene Glycol (PEG)                                            |         |                                                                                                                                                                                                                                 |
|      | 1               | Ethyl Aceto Acetate (EAA)                                             |         |                                                                                                                                                                                                                                 |
|      |                 |                                                                       |         |                                                                                                                                                                                                                                 |
| 148. | Vita            | min-K3 is called as                                                   |         |                                                                                                                                                                                                                                 |
|      | (A)             | Farnoquinone                                                          | (B)     | Menaquinone                                                                                                                                                                                                                     |
|      | S               | Menadione                                                             | (D)     | Phylloquinone                                                                                                                                                                                                                   |
|      |                 |                                                                       |         | 마루 : 1 시간 1 시간 : 1<br>- 1 시간 : 1 시 |
| 149. | Ethy            | l aceto acetate can be synthesised by                                 |         |                                                                                                                                                                                                                                 |
|      | (A)             | Aldol condensation                                                    |         |                                                                                                                                                                                                                                 |
|      | 16)             | Claisen condensation                                                  |         | **                                                                                                                                                                                                                              |
|      | (C)             | Clemmenon reduction                                                   |         |                                                                                                                                                                                                                                 |
|      | (D)             | Birch Reduction                                                       |         |                                                                                                                                                                                                                                 |
|      |                 |                                                                       |         |                                                                                                                                                                                                                                 |
| 150. | Alky            | lated derivatives of acetic acid are obtain                           | ined f  | rom — by acid hydrolysis.                                                                                                                                                                                                       |
|      | (A)             | Malonic Esters                                                        |         |                                                                                                                                                                                                                                 |
|      | (B)             | Succinic Esters                                                       |         |                                                                                                                                                                                                                                 |
|      | (C)             | Diethyl Esters                                                        |         |                                                                                                                                                                                                                                 |
|      | <b>(</b> )      | Aceto Acetic Esters                                                   |         |                                                                                                                                                                                                                                 |
|      |                 |                                                                       |         |                                                                                                                                                                                                                                 |
| 151. | $\mathrm{CH}_3$ | $-\mathrm{CO}-\mathrm{CH}_2-\mathrm{COOC}_2\mathrm{H}_5$ is called as |         |                                                                                                                                                                                                                                 |
|      | (A)             | Diethyl Malonate (DEM)                                                | (B)     | Ethyl Aceto Acetate (EAA)                                                                                                                                                                                                       |
| ė.   | (C)             | Tri Ethyl Amine (TEA)                                                 | (D)     | Diethyl Amine (DEA)                                                                                                                                                                                                             |
|      | · V             |                                                                       |         |                                                                                                                                                                                                                                 |
| 152. | Mole            | cules like $ mH_{2}, O_{2}, N_{2}, Cl_{2}$ and $ mBr_{2}$ have        |         | ——— Dipole moments.                                                                                                                                                                                                             |
|      | (A)             | Very high                                                             |         | Very low                                                                                                                                                                                                                        |
|      | 1               | Zero                                                                  | (D)     | High                                                                                                                                                                                                                            |
|      |                 |                                                                       |         |                                                                                                                                                                                                                                 |

| 153. | In a  | E1 reaction involving an altyl halide and a base, the rate of the reaction is              |
|------|-------|--------------------------------------------------------------------------------------------|
|      | (A)   | linearly depends on the concentration of the alkyl halide only                             |
|      | (B)   | linearly depends on the concentration of both reactants                                    |
|      | (C)   | independent of the concentration of the alkyl halide                                       |
|      | (D)   | is independent of the concentration of both reactants                                      |
|      |       |                                                                                            |
| 154. | The   | major product of E2 reaction of alkyl fluorides is the ——————————————————————————————————— |
|      | (A)   | Terminal                                                                                   |
|      | (B)   | More stable                                                                                |
|      | 6     | Less stable                                                                                |
|      | (D)   | Symmetric                                                                                  |
|      |       |                                                                                            |
| 155. | 2-Br  | omo butane heated with alcoholic KOH gives                                                 |
|      | (A)   | Cyclobutans                                                                                |
|      | (B)   | 1 Butanol                                                                                  |
| •    | 10)   | 1-Butene and 2-butene                                                                      |
|      | (D)   | Tri substituted butune                                                                     |
|      |       |                                                                                            |
| 156. | Whic  | h reaction takes place with inversion of configuration?                                    |
|      | (A)   | $\mathrm{SN}^1$ reaction                                                                   |
|      | (B)   | SN <sup>2</sup> reaction                                                                   |
|      | (C)   | Asymmetric synthesis                                                                       |
|      | (D)   | Stereo selective reaction                                                                  |
|      |       |                                                                                            |
| 157. | Elect | rophiles are                                                                               |
|      | (A)   | Electron rich species                                                                      |
|      | (6)   | Electron deficient species                                                                 |
|      | (C)   | Neutrons rich species                                                                      |
|      | (D)   | Proton deficient species                                                                   |

| 158. | Tri n                                                | nethoprim and sulfonamide combina    | ation give |                              |  |  |
|------|------------------------------------------------------|--------------------------------------|------------|------------------------------|--|--|
|      | $\langle A \rangle$                                  | Synergistic action                   |            |                              |  |  |
|      | (B)                                                  | Reversible Antogonist                |            |                              |  |  |
|      | (C)                                                  | Antagonistic action                  |            |                              |  |  |
|      | (D)                                                  | Irreversible Antagonist              |            |                              |  |  |
|      |                                                      |                                      |            |                              |  |  |
| 159. | The 1                                                | nost serious adverse effect associat | ed with p  | yrazinamides is              |  |  |
|      | (A)                                                  | Cyto toxicity                        |            |                              |  |  |
|      | (B)                                                  | Hepato toxicity                      |            |                              |  |  |
|      | (C)                                                  | Nephro toxicity                      |            |                              |  |  |
| 1    | (D)                                                  | Neuro toxicity                       |            |                              |  |  |
|      |                                                      |                                      |            |                              |  |  |
| 160. | Whic                                                 | h of the following is Amides contain | ning Anth  | elmintics?                   |  |  |
|      | (A)                                                  | Furoesimide                          |            |                              |  |  |
|      | 1                                                    | Niclosamide                          |            |                              |  |  |
|      | (C)                                                  | Actimide                             |            |                              |  |  |
|      | (D)                                                  | Benzamide                            |            |                              |  |  |
|      |                                                      |                                      |            |                              |  |  |
| 161. | Albendazole contains which of the following nucleus? |                                      |            |                              |  |  |
|      | (A)                                                  | Pyrazole                             |            |                              |  |  |
|      | (B)                                                  | Benzimidazole                        |            |                              |  |  |
|      | (C)                                                  | Indole                               |            |                              |  |  |
|      | (D)                                                  | Quinoline                            |            |                              |  |  |
|      |                                                      |                                      |            |                              |  |  |
| 162. | Resor                                                | nance in Benzene is due to           |            |                              |  |  |
|      | 1                                                    | Delocalisation of $\pi$ –electrons   | (B)        | Stable $\pi$ -electrons      |  |  |
|      | (C)                                                  | Stable $\sigma$ -electrons           | (D)        | Unstable $\sigma$ -electrons |  |  |
|      |                                                      |                                      |            |                              |  |  |
| 163. | Whic                                                 | h one of the following is a Benzimid | lazole Ant | chelminthic?                 |  |  |
|      | (A)                                                  | Piperazine Citrate                   |            | Mebendazole                  |  |  |
|      | (C)                                                  | Prazi Quantel                        | (D)        | Avermectin                   |  |  |
|      |                                                      |                                      |            |                              |  |  |

- 164. Barbiturate and Benzodiazepines (Sedative and Hypnotics) are
  - (A) GABA receptor Agonist
- (B) GABA receptor Antagonist
- (C) DUPA receptor Agonist
- (D) DUPA receptor Antagonist
- 165. Which one of the following does not have asymmetric carbon?
  - (A) Halothane

(B) Isoflurane

(C) Desflurane

- (d) Methoxyflurane
- 166. Which one of the following Antidepresent is selective Nor epinephrine Receptor Inhibitor?
  - (A) Citalopram

(B) Sertraline

Desipramine

- (D) Fluoxetine
- 167. Which form of Triprolidine is pharmacologicaly active?
  - (A) CIS-form

(3) Trans-form

(C) R-form

- (D) S-form
- 168. Choose the correct chemicals structure of Dapsone

$$(A) \quad \left\langle \bigcirc \right\rangle - \left\langle \begin{matrix} 0 \\ \parallel \\ \parallel \\ 0 \end{matrix} \right\rangle$$

(B)  $CH_3 \longrightarrow CH_3$ O

CH<sub>3</sub>
O

CH<sub>3</sub>

- $O_2N$   $\longrightarrow$  S  $\longrightarrow$   $NO_2$
- 169. A cardioselective  $\beta$  –adrenergic blockers is
  - (A) Nitroglycerin

B) Propranolol

(C) Verapamil

(D) Bepridil

| 170. | The                                                                       | The drug ketamine is used as ————       |         |                                      |  |  |  |  |
|------|---------------------------------------------------------------------------|-----------------------------------------|---------|--------------------------------------|--|--|--|--|
|      |                                                                           | Anaesthetic                             | (B)     | Anti-tubercular agents               |  |  |  |  |
|      | (C)                                                                       | Anti histamine                          | (D)     | Anthelmirtics                        |  |  |  |  |
|      |                                                                           |                                         |         |                                      |  |  |  |  |
| 171. | Whi                                                                       | ch one of the following is a Thiophene  | deriva  | tive                                 |  |  |  |  |
|      |                                                                           | methapyrilene hydrochloride             |         |                                      |  |  |  |  |
|      | (B)                                                                       | meclizine hydrochloride                 |         |                                      |  |  |  |  |
|      | (C)                                                                       | Buclizine hydrochloride                 |         |                                      |  |  |  |  |
|      | (D)                                                                       | Chlorcyclizine hydrochloride            |         |                                      |  |  |  |  |
|      |                                                                           |                                         |         |                                      |  |  |  |  |
| 172. | Which form of Atomoxetine is more active Anti depressant than other form? |                                         |         |                                      |  |  |  |  |
|      |                                                                           | R-Atomoxetine                           |         |                                      |  |  |  |  |
|      | (B)                                                                       | S-Atomoxetine                           |         |                                      |  |  |  |  |
|      | (C)                                                                       | RS-Atomoxetine                          |         |                                      |  |  |  |  |
|      | (D)                                                                       | Cis-Atomoxetine                         |         |                                      |  |  |  |  |
|      |                                                                           |                                         |         |                                      |  |  |  |  |
| 173. | Mart                                                                      | essentiaum consists of the grain of     | the ce  | real ——— belongs to the family       |  |  |  |  |
|      | Gran                                                                      | ninea                                   |         |                                      |  |  |  |  |
|      | (A)                                                                       | D-glucose                               | (3)     | Barley                               |  |  |  |  |
|      | (C)                                                                       | O-galactose                             | (D)     | melibiose                            |  |  |  |  |
|      |                                                                           |                                         |         |                                      |  |  |  |  |
| 174. |                                                                           | is a pro-vitamin D <sub>2</sub> which i | s found | d both in plants, animals and yeast. |  |  |  |  |
|      | (A)                                                                       | Lansesteral                             | (B)     | Stigmasterol                         |  |  |  |  |
|      |                                                                           | Ergosterol                              | (D)     | Bile acid                            |  |  |  |  |
|      | - Carrier - Lan                                                           |                                         |         |                                      |  |  |  |  |

| 175. | w nic       | on of the following is pyrrollaine alkalo  | ια:      |                  |   |
|------|-------------|--------------------------------------------|----------|------------------|---|
|      | (A)         | Ricinine                                   |          |                  |   |
|      | (B)         | Coninine                                   |          |                  |   |
|      | S           | Hygrine                                    |          |                  |   |
|      | (D)         | Reserpine                                  |          |                  |   |
|      |             |                                            |          |                  | 5 |
| 176. | Molis       | sch test is used for the identification of |          |                  |   |
|      | (A)         | Proteins                                   |          |                  |   |
|      | <b>B</b> )  | Carbohydrates                              |          |                  |   |
|      | (C)         | Alkaloids                                  |          |                  |   |
|      | (D)         | Steroids                                   |          |                  |   |
|      |             |                                            |          |                  |   |
| 177. | Chole       | esterol contains — nu                      | ımber    | of carbon atoms. |   |
|      |             | 27                                         | (B)      | 17               |   |
|      | (C)         | 24                                         | (D)      | 28               |   |
|      |             |                                            |          |                  | * |
| 178. | Whic        | h of the following amino acids has a ph    | nenolio  | c ring?          |   |
|      | (A)         | Proline                                    | (B)      | Alanine          |   |
|      | (C)         | Prytophan                                  | <b>(</b> | Tyrosine         |   |
|      |             |                                            |          |                  |   |
| 179. | The r       | number of chiral centres in Glucose is     |          |                  |   |
|      | (A)         | 8                                          |          | 4                |   |
|      | - Da - 11 1 |                                            |          |                  |   |

| 100. | wan        | tose on hydrolysis by dilute acids yields  |         |                                  |
|------|------------|--------------------------------------------|---------|----------------------------------|
|      | (A)        | two molecules of fructose                  |         |                                  |
|      |            | two molecules of D-glucose                 |         |                                  |
|      | (C)        | one molecules of D-glucose and one m       | olecu   | le of fructose                   |
|      | (D)        | three molecules of D-glucose               |         |                                  |
|      |            |                                            |         |                                  |
| 181. | Ligh       | nt source used for the measurement in th   | he ult  | raviolet region is a             |
|      | (A)        | Tungsten filament lamp                     |         |                                  |
|      | <b>(B)</b> | Denterium discharge lam                    |         |                                  |
|      | (C)        | Globar rod                                 |         |                                  |
|      | (D)        | Nernst glowers                             |         |                                  |
|      |            |                                            |         |                                  |
| 182. | Whic       | ch of the following reduces the fluoresce  | nce of  | riboflavine by static quenching? |
|      | (A)        | EDTA                                       | (B)     | Dimercaprol                      |
|      | (C)        | Penicillamine                              | (1)     | Caffeine                         |
|      |            |                                            |         |                                  |
| 183. | Grad       | des of silica used in HPTLC has the part   | ticle s | ize as ———— and ———.             |
|      | (A)        | large and uniform                          |         |                                  |
|      | (B)        | small and uniform                          |         |                                  |
|      | (C)        | large and irregular                        |         |                                  |
|      | (D)        | small and irregular                        |         |                                  |
|      |            |                                            |         |                                  |
| 184. | Whic       | ch of the following is used for the determ | ninati  | on of molecular weight?          |
|      | (A)        | Gas chromatography                         | (B)     | Paper chromatography             |
|      | 1          | Gel filtration                             | (D)     | Ion-exchange                     |
|      |            |                                            |         |                                  |

| 185. | Quar  | ntum yield of fluorescence would be equa                            | ar to  |                                              |  |  |  |  |
|------|-------|---------------------------------------------------------------------|--------|----------------------------------------------|--|--|--|--|
|      | (A)   | number of photons emitted - number of                               | of pho | otons absorbed                               |  |  |  |  |
|      | (B)   | photons absorbed – photons emitted                                  |        |                                              |  |  |  |  |
|      |       | number of photons emitted / number of                               | f pho  | tons absorbed                                |  |  |  |  |
|      | (D)   | number of photons absorbed / number                                 | of ph  | otons emitted                                |  |  |  |  |
|      |       |                                                                     |        |                                              |  |  |  |  |
| 186. | The   | quantum efficiency fluorescence decreas                             | es wi  | th increasing                                |  |  |  |  |
|      | (A)   | viscosity                                                           | 0      | temperature                                  |  |  |  |  |
|      | (C)   | pH                                                                  | (D)    | pressure                                     |  |  |  |  |
|      |       |                                                                     |        |                                              |  |  |  |  |
| 107  | HDI   | C – state silica consists of porous microp                          | oortio | les with a ———— (or) ———                     |  |  |  |  |
| 187. | shap  |                                                                     | Jartic | les with a                                   |  |  |  |  |
|      | (A)   | Spherical (or) Regular                                              | (B)    | Non spherical (or) Regular                   |  |  |  |  |
|      | 1     | Spherical (or) Irregular                                            | (D)    | Non spherical (or) Irregular                 |  |  |  |  |
|      |       |                                                                     |        |                                              |  |  |  |  |
| 188. | The   | The mobile phase in Reverse-Phase HPLC comprises — and — and —.     |        |                                              |  |  |  |  |
| 100. | (A)   | water and petroleum ether                                           | r      |                                              |  |  |  |  |
|      |       | water and methanol                                                  |        |                                              |  |  |  |  |
|      | (C) · | water and carbon tetrachloride                                      |        |                                              |  |  |  |  |
|      | (D)   | water and cyclohexane                                               |        |                                              |  |  |  |  |
|      | (2)   |                                                                     |        |                                              |  |  |  |  |
| 100  | T TT  | DIC the efetien are phase is polar and                              | tho.   | mobile phase is non-polar, then it is called |  |  |  |  |
| 189. | In H  |                                                                     | the    | mobile phase is non-polar, then it is cance  |  |  |  |  |
|      | (A)   | Normal-phase partition                                              |        |                                              |  |  |  |  |
|      | (B)   | Reversed-phase partition                                            |        | 시시다리는 학생이 지하다는 생각이                           |  |  |  |  |
|      | (C)   | Ion-pair                                                            |        |                                              |  |  |  |  |
|      | (D)   | Ion-exchange                                                        |        |                                              |  |  |  |  |
|      |       |                                                                     |        |                                              |  |  |  |  |
| 190. |       | IPLC, while supplying mobile phase by ired to smoothout the pulses. | y me   | chanical pump, a — device is                 |  |  |  |  |
|      | (A)   | Gauze                                                               |        | Damping                                      |  |  |  |  |
|      | (C)   | Temperature                                                         | (D)    | Injection                                    |  |  |  |  |
|      |       |                                                                     |        |                                              |  |  |  |  |

| 191. In an applied magnetic field in NMR study, the number of orientations of a r |                                                                                            |                                         |             | number of orientations of a nucleus with |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|-------------|------------------------------------------|--|--|
|                                                                                   | spin                                                                                       | number I, is given by the formula of    | of          |                                          |  |  |
|                                                                                   | (A)                                                                                        | 2(I+1)                                  | (B)         | I+1 .                                    |  |  |
| •                                                                                 |                                                                                            | 2I+1                                    | (D)         | I+2                                      |  |  |
|                                                                                   |                                                                                            |                                         |             |                                          |  |  |
| 192.                                                                              | Stan                                                                                       | dard used for NMR is                    |             |                                          |  |  |
|                                                                                   | (A).                                                                                       | methyl silane                           | (B)         | triethyl silane                          |  |  |
|                                                                                   | (C)                                                                                        | trimethyl silane                        | <b>(b</b> ) | tetramethyl silane                       |  |  |
|                                                                                   |                                                                                            |                                         |             |                                          |  |  |
| 193.                                                                              | In NMR spectroscopy the difference between the resonance position of a nucleus and that of |                                         |             |                                          |  |  |
|                                                                                   | a sta                                                                                      | ndard reference compound is called as   |             |                                          |  |  |
|                                                                                   | (A)                                                                                        | spin spin interaction                   | (B)         | proton magnetic resonance                |  |  |
|                                                                                   | (C)                                                                                        | spin spin coupling                      | S)          | chemical shift                           |  |  |
|                                                                                   |                                                                                            |                                         |             |                                          |  |  |
| 194.                                                                              | In N                                                                                       | MR spectroscopy the distance betwee     | en the      | e centres of the two adjacent peaks in a |  |  |
|                                                                                   | 1.1                                                                                        | iplet usually is constant and is called |             |                                          |  |  |
|                                                                                   |                                                                                            | Coupling constant                       | (B)         | Spin rotation constant                   |  |  |
|                                                                                   | (C)                                                                                        | Shift constant                          | (D)         | Peak constant                            |  |  |
|                                                                                   |                                                                                            |                                         |             |                                          |  |  |
| 195.                                                                              | Whic                                                                                       | h of the following equipment is require | ed for c    | conducting radio immuno array?           |  |  |
|                                                                                   | (A)                                                                                        | pH meter                                | (B)         | Centrifuge                               |  |  |
|                                                                                   | (C)                                                                                        | Conductometer                           | (D)         | Densitometer                             |  |  |
|                                                                                   |                                                                                            |                                         |             |                                          |  |  |
|                                                                                   |                                                                                            |                                         |             |                                          |  |  |

| 196. | In wh | ich of the following ways the capillary electrophoretic separations are performed?  |
|------|-------|-------------------------------------------------------------------------------------|
|      | (A)   | Iso electric focussing                                                              |
|      | (B)   | Fast atom bombardment                                                               |
|      | (C)   | Double focussing spectrometers                                                      |
|      | (D)   | Field ionization                                                                    |
| 197. | Cond  | uctance is expressed as ——— units.                                                  |
|      | (A)   | $A^{\circ}$ ohms <sup>-1</sup>                                                      |
|      | (C)   | $\delta$ (D) MeV                                                                    |
|      |       |                                                                                     |
| 198. | Ampe  | erometric titrations are performed using — method.                                  |
|      | (A)   | droping mercury electrode                                                           |
|      | (B)   | glass electrode                                                                     |
|      | (C)   | polarographic                                                                       |
|      | (D)   | specific ion electrode                                                              |
|      |       |                                                                                     |
| 199. | Stret | ching vibration in IR spectroscopy involves changes in the                          |
|      | (A)   | bond angle bond length                                                              |
|      | (C)   | bond rotation (D) bond bending                                                      |
|      |       |                                                                                     |
| 200. | Stror | nger bonds produce IR absorption at higher frequencies which of the following would |
|      | be?   |                                                                                     |
|      | (A)   | sp $(B)$ sp <sup>2</sup>                                                            |
|      | (C)   | $\mathrm{sp^3}$ (D) $\mathrm{sp^4}$                                                 |
|      |       |                                                                                     |
|      |       |                                                                                     |

#### SPACE FOR ROUGH WORK

## SPACE FOR ROUGH WORK

### SPACE FOR ROUGH WORK



DJPC/19 40