CE	A .		1-1	\circ
('H'	Δ	$\mathbf{I} \rightarrow \mathbf{H}$. /	×
N / E/A	Γ	$\mathbf{X} \mathbf{A} \mathbf{L} \mathbf{A}$	// L	U

			 	 	·		
Register	-						
Number	,	·			L	<u> </u>	<u> </u>

2018

AGRICULTURAL ENGINEERING (Degree Standard)

Time Allowed: 3 Hours]

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.
- 6. You will also encode your Question Booklet Number with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

 $A \bullet C \Phi$

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 11. Do not tick-mark or mark the answers in the Question Booklet.
- 12. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 13. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

SPACE FOR ROUGH WORK

hobbleder.

	In pi	ane tabling inaccessible points ma	(B)	Resection method
	(C)	Radiation method	, ,	Traversing method
2.	Inal	planimeter, when the tracing poir	it is moved a	llong a circle without rotation of the wheel
×		the circle is known as the		
•	(A)	Prime circle		Zero circle
	(Ċ)	Ortho circle	. (D)	Circum circle
3.	The l	, ine joining points of equal elevati	on is known	as a
	(A)	Horizontal line	(B)	Vertical line
	400	Contour line	(D)	Level line
• .				
4.	The o	operation of levelling from the fir	ishing point	to the starting point at the end of a day's
		is known as	;	
	. (A) `	Simple levelling	(B)	Longitudinal levelling
	(C)	Cross-sectional levelling		Check levelling
5.	The l	ine of collimation and axis of the	telescope sh	ould
,		coincide	(B)	be parallel
	(C)	be perpendicular	(D)	be tangential
	;		••	
6.	The l	penchmark established by the sur	vev of India	is known as the
••	(A)	Temporary bench mark	(B)	Permanent bench mark
		GTS bench mark	(D)	Arbitrary bench mark
	,		,	
7.		ne trapezoidal formula, for calcul med to be	ating area, 1	the line joining the top of the ordinates is
	(A) .	curved	(6)	straight
•	(C)	circular	(D)	parabolic

		holding capacity		
•	(ii)	Channels left by decayed	roots perform an in	nportant role in percolation of water
	(A)	(i) only true	(B)	(ii) only true
•	(C)	both (i) and (ii) are true	(D)	both (i) and (ii) are not true
	•			
9 .	The	gully in which erosion is co	ontinued is called	
٠.	(A)	Dormant gully		Active gully
	(C)	Dead gully	(D)	Healed gully
	• • • •			
10.	Mate	ch the following :		
10.	IVIAU	State of Gully	Property	
	(a) .		1. Healing	
,	(b)		2. Stabilization	
•	(c)	,	3. Formation	
	(d)	Stage 4	4. Initiation	
			15.	
	(4)	•	d)	
	(A)	,	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	(C)		4	
	(D).		4 .	
	` :			
			f and a six manifolium in	am of tillam anaustiana
11.	Con	touring refers to growing o		
ļ	(C)	across the contour of the		along the slope
•	(C)	along the wind direction	(D)	across the wind direction
•				
12.	Whi	ch of the following operation	on is associated to v	
•	(A)	mole drainage	(6)	deep chiseling
	(C)	basin listing	(D)	tie ridging
				•

(i) There exists a positive correlation between organic matter present in soil and its water

What do you infer from the following statements?

CEAGE/18

13.	Cent	ral Arid Zone Research Institute is lo	cated in	·
•	(A)	Jaipur	(B)	Jaisalmer
		Jodhpur	· (D)	Agra
14.	The o	channels constructed across the slope	e for the	e purpose of intercepting surface runoff are
	calle			•
		Diversion drains	. (B)	Relief drains
	(C).	Grassed waterway	(D)	Field drains
15.	On a	3 percent land slope, calculate the h	orizonta	l spacing of bunds in medium rainfall zone
20.	(A)	90 m	. (B)	60 m
		30 m	(D)	15 m
	•	•		
1.0	XX71 .	ch of the following combinations is/ar	o correct	. ` · ·
16.		Bench terrace with inward slope		leavy rainfall areas
	(i) (ii)	Bench terrace with level top		Medium rainfall areas
	(iii)	Bench terrace with outward slope		ow rainfall areas
•	(A)	(i) only	(B)	(ii) only
	(C)	(iii) only		(i), (ii) and (iii)
	" (O)			
	P713	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fa'amagia	on is towned as
17.		susceptibility or vulnerability of soil	to erosio	Erodibility
	(A)	Erosivity	(D)	Accretion
	· (C)	EI_{30} index	(D)	Accietion
	*			
18.	In E	$ m I_{30}$ method, the $ m I_{30}$ refers to		
•	(1)	maximum rainfall intensity of 30 n	ninutes	duration
	(B)	rainfall depth of 30 mm		
•	(C)	kinetic energy of 30 minutes rainfa	all	
	(D)	maximum infiltration rate for 30 n	ninutes	
	,		•	
10	O1	easter wheel is a		, , , , , , , , , , , , , , , , , , ,
19.	Cosh	nocton wheel is a	(B)	flow measuring device
	(0)	sediment sampler	· (D)	wind speed measuring device
•	, (C)	velocity measuring device	(D)	wind speed measuring device

0.	Which of the following pairs are correctly matched?									
	(i) Soil wetness - Relative water content of soil									
	(ii)	Mass wetness -	Soil water	content						
	(iii)	Volume wetness —	Soil water	content or	n volumetric basis					
,	(A)	(i) and (ii)		(B)	(i) and (iii)					
	(C)	(ii) and (iii)	·		(i), (ii) and (iii)					
	e .	•								
1.	1 ha	-m equals	cubic m	eter.	• ,					
•	(A)	1,000		O	10,000					
	(C)	5,000	· ,	(D)	50,000					
		• • • • • • • • • • • • • • • • • • •	,	,						
2.	In ge	neral, the major comp	onents of wa	ter requir	ement of crops is					
•	(A)	Pre-sowing irrigatio		tor roquir	ement of crops is					
		Evapotranspiration	•							
	(C)	Leaching requireme	nt							
•	(D)	Deep precolation fro	•	one						
	,	,								
3.	Whic	h of the following is/or	no mand to ma		, , , , , , , , , , , , , , , , , , ,					
<i>,</i>	(i)	h of the following is/a: Water meter	re used to me	asure irri	gation water?					
	(ii)	Current meter	,	,						
	(iii)	Dethridge meter								
•	(A)	(i) only	u.	(B)	(i) and (ii) only					
,	(C)	(i) and (iii) only			(i), (ii) and (iii)					
•	,		•		· · · · ·					
ŧ.	Each	side of cipoletti weir l	haa a alama (E		·					
τ.	(A)	1:2	ias a stope (F	•	1.0					
	. (6	1:4	,	(B)	1:3					
		± • ±		(D)	1:5					
	·									
5.		heet of water which o	verflows a we	ir is calle	d					
	(A)	jet		(B)	runoff					
	Contract of the second	nappe		(D)	stream					

26.		•	tment of i	rigatio	on water,	, the q	uantity of l	bleaching pow	der added	in the
		er source is.	•		•	(D)				
	(A)		•			(B)	1.0 mg/lit			
		2.0 mg/lit		,	,	. (D)	3.0 mg/lit			
			,	,			• •	•		
27.	Find	d out the dep	th of which	1 ha c	f rice fiel	ld can l	be irrigated	with a flow of	7.5 l/s in 8	hours.
	(A)	0.0216 cm	,			(B)	21.6 cm			
•	40)	2.16 cm			•	(D)	4.32 cm	:		
28.	Effic	ciency of Airl	ift pumps i	s abou	t	·	– per cent.		•	.,
	(1)	9 30				(B)	50			
٠	(C)	70		, .	•	(D)	80			
	,	<i>.</i> * .		,	• .	` ,				
29.	Drai	naga gooffigi	ant in the d	lanth a	f rretor d	bonion	off from a c	irron orion in		
		nage coeffici	ent is the t	tepun o	i water u	ramed	•	given area in		
,	(A)	1 hour	•		•	(B)	1 day			
	(C)	1 minute	-			(D)	1 month		<i>z</i> •	
		·								
30.	Mate	ch the follow	ing:						•	
-		Property			Unit				•	
	` / `				,	17 ½	•			
	(a)	EC		1	(mmole	e/l) ^{/2}				,
·	(b)	SAR	٠	2.	ds/m	. ·		•	• •	•
	(c) .	RSC ESP		3.	per cen	t			•	
	(d)	ESF .		4.	mc/l		•			,
		(a) (b)	(c)	(d)				¥		
	(A)	2 4	1	3	•		,			
	(B)	4 2	1	3 -	•				•	
		2 1	4	3		,				·'
	(D)	4 2	3	1		•		, ,	•	•.
	* /	_								

31.	The s	soak pit should be filled with	•				
	(A)	course aggregates only				,	,
	(B)	fine aggregates only	*				•
• .:		course and fine aggregates only					•
	(D)	heavy clay			,	•	
•	1.					•	
32.	The	minimum side slope of an earthen	chann	el for	c polyethylene	e lining is	
		2:1		(B)	2.5:1		
•	(C)	3:1		(D)	15:1		•
	·						
33.	maxi 2500	rmine the capacity of an overhead imum of about 40000 litres of wat 00 litres per hour during rest of the of only 28000 lit/hr	er per	hour	for two hour	s during noo	n and only abou
	(A)	12,000	•	(2)	24,000		
	(C)	25,000		(D)	36,000	· .	•
34.	The	most commonly used concrete pipes	for uno	lergr	ound pipeline	water distrib	ution system is
	(A)	pipes with bell ends				•	
	(B)	pipes with tongue and groove jo	int		• •	•	,
	(C)	pipes with faucet and spigot joir	nt		•		·
	90	pipes with collar joints		,		•	
		•		5			
35.	Whi	ch of the following is called super s	structu	re?			•
	I.	Foundation			ı ;		•
•	IÌ.	Walls and pillars	÷		·	•	
	III.	Roofs, floors and doors and wind	dows		•	. •	·
	(A)	I only		(B)	II and III		
·	(C)	I and II	•	0	I, II and III		

36.	Which type of poultry house is most economical?									
,	(A)	wire floored poultry houses	. ,							
	00	deep litter poultry houses								
	(C)	cage houses								
-	(D)	open air poultry houses	•	·						
37.	Face	in type of barn are usually preferred fo	r							
	(A)	Milch animals	(D)	Bullocks						
	(C)	Buffaloes	(D)	Sick animals						
i	•									
38.	The l	limiting operating pressure which can l	oe sus	stained by a non-reinforced concrete pipe i						
•		ation water conveyance is								
	(A)	4 m	(T)	6 m						
	(C)	8 m	(D)	10 m						
٠.										
39.	Pyrh	eliometer is an instrument, which mea	sures							
	U.	Beam radiation	(B)	Total radiation						
	(C)	Global radiation	(D)	Diffused radiation						
40.	Func	tions of cover plates in flat plate collect	ors a	re						
10.	(i)	to transmit maximum short wave rad								
	(ii)	to minimise upward heat loss from th								
	(iii)	to shield the absorber plate from dire	ct exp	oose to environment						
	(iv)	to allow infra red radiation emitted b								
•	W	(i), (ii) and (iii) are correct	(B)	(i), (iii) and (iv) are correct						
-	(C)	(i), (ii) and (iv) are correct	(D)	(ii), (iii) and (iv) are correct						
		,		•						
41.	Glas	s wool is used as — in a fla	at pla	te collector.						
	(A)	absorber plate	(B)	cover plate						
	. (4)	insulation material	(D)	enclosure material						
			` '							

(2	A) Tip speed ratio		(B)	Torque coeff	icient		•
	Solidity		(D).	Power coeffi	cient		
r		ž.	÷		•	-	,
43. T	he calorific value of bio	gas is					
(A	A) 500 – 550 kJ/kg				•		•
. (H	3) 2094 – 2303 kJ/kg					.·	
((C) 5000 – 5500 kJ/kg	•			/	•	
. 4	20935 – 23028 kJ/	kg	•				
44. O	ne mantle lamp of 100	O candle powe	r capacity	requires -	·	· m³ of bio	gas pe
	our.						
(A	0.41 to 0.52		(B)	0.22 to 0.41			
. 4	0.11 to 0.15		(D)	0.04 to 0.05			
		٠.					,
45. In	anaerobic digestion	process, duri	ing initial	acid format	ion stage	large, am	ount o
	——— will be re	leased.					·
· (A	CH_4			$\mathrm{CO_2}$,		
. (C	H_2S	•	(D)	$\mathrm{NH_{3}}$			
			_.			-	•
46. G	enerally, the total solic	l content of fe	ed materia	l is	% in	dry ferme	entation
	cocess.						
. (A	A) <10%		(B)	10-20%	•	,	•
. 4	25-30%		(D)	>40%			
•							•
47. ×Tl	he resultant fuel in ther	mal gasificati	on process	is	•		
47. / TI	he resultant fuel in ther Producer gas	rmal gasificati	on process (B)	is Bio gas			
47. Th	Producer gas	rmal gasificati	•	•			
4	Producer gas Biochar	rmal gasificati	(B)	Bio gas	,		· ·

- 48. Formula for determining equivalent diameter of irregular shaped particles (a, b, c maximum, internal and minimum mutually perpendicular dimensional.
 - (A) $\frac{(abc)^{1/2}}{a}$

(B) $\frac{(abc)^{1/3}}{a}$

(C) $\frac{(abc)}{3}$

- $(abc)^{1/3}$
- 49. The optimum moisture content of range for paddy harvesting is
 - (A) 16 18

(B) 12 - 14%

20 - 22%

- (D) 10 12%
- 50. In vacuum oven method, the moisture content of grain is determined by heating at

96°C

(B) 72°C

100°C

(A)

- (D) 130°C
- 51. Determine the bone dry weight of 2 tonnes of paddy with 22% moisture content during drying
 - (A) 1780 kg

(B) 220 kg

(C) 440 kg

 \Diamond

- 1560 kg
- 52. Higher percentage of open area in air-screen grain cleaners will result in
 - (A) Increase in capacity and decrease screening efficiency
 - (B) Decrease in capacity and decrease screen efficiency
 - Increase in capacity and increase screening efficiency
 - (D) Decrease in capacity and increase screen efficiency

<i>9</i> 0.		onne.	treating w	oth linseed oil at the rate of
•	(A)	1.0 to 1.5	(B)	1.5 to 3
•	(C)	2.0 to 3		1.5 - 2.5
	•			
54.	Gern	n from corn is separated by using		
	(A)	Centrifuge	(B)	Filteration
. ,	· (C)	Grinding		Hydroclone
	•		•	
55.	Whic	h of the following is a continuous	bucket elev	vator?
	(Å) ·	Centrifugal discharge elevator	(B)	Positive discharge elevator
	(C)	Marine leg elevator		Super capacity bucket elevator
•			,	
56.	In be	st conveyor, spacing between idler	s should n	ot exceed
	(A)	1.5 m	(B)	1.8 m
	(C)	2.0 m	0	1.2 m
•				
57.	Name	e the fumigant used in storage of a	grains	
	(A)	DDVP	` (B)	Malethion
,		Methyl Bromide	(D)	Ethylene •
58.	Insec	ts are killed when the oxygen	level in	the intergranular space falls to abou
,	(A)	5%	(B)	4%
· ;	(C)	3%		2%
59.	The o	il content of shelled groundnuts is	in the ran	ge of
	(A)	20 - 25%	(B)	30 - 35%
		45 - 50 %	(D)	55 - 60%
CEA	GE/18	٠.	12	٥

60.	Вош	ng point elevation	in evaporators	can be esti	mated using .			
	(A)	Raoult's Law		(B)	Boyle's Law	•		•
	4	Duhring's Rule		. (D)	Stoke's Law	· · · ·		
·.·	. ·					,	·.	
61.	The	terminal velocity	of the solid part	icle in a flu	uid medium is pr	oportional to		*********************
	of th	e diameter of the p	particle.	•	•			
	V.	Square	•	(B)	Square root			
	(C)	Cube		(D)	Cube root			•
					•			
62.	Crea	m separator work	s on the principl	e of —	force.			
	(A)	Gravitational			Centrifugal			
	(C) ·	Abrasive		(D)	Impact			•
				· · · · · · · · · · · · · · · · · · ·				
63.	"The	work required in	crushing is prop	ortional to	the new surface	created". Thi	s principle	e is
, ·	(A)	Kick's law		(B)	Bond's law	• • •		
	1	Rittinger's law		(D)	Work index .			,
34 .	Ham	mer mill works on	the principle of		force in s	size reduction	•	
•	(A)	Centrifugal			Impact			
	(C)	Abrasive	. <u>-</u>	(D)	Gravitational			٠
	•	•						
35.	Sedir strea	mentation uses —		forces to	separate partic	ulate materia	al from f	luid
							,	
	(A) -	Centrifugal		(B)	Impact			
	(C)	Abrasive			Gravitational			

66.	•	•	ods is	s maintained throughout the storage period	ι.
		own as			
	(A) .	Modified atmosphere packaging	:		
	(6.0	Controlled atmosphere packaging			
	(C)	Vacuum packaging			
	(D)	Active modified atmosphere packagin	g		
	,				
67.		containing 3% fat and 8.5% SNF from nerally referred to as	the co	ombination of fresh and reconstituted milk	ξ.
	(A)	double tonned milk	(B)	hômogenized milk	
	100	toned milk	(D)	standardised milk	
68.	In ar	n efficiently homogenized milk, the fat a	globule	es are sub divided to less than or equal to	
		$2~\mu\mathrm{m}$ (micron meter)	(B)	0.5 μm	•
	(C)	$1\mu\mathrm{m}$	(D)	$3 \mu m$	
69.		is the method used to extr	act oil	il from oil seeds and juice from sugarcane.	
•	(A)	Cutting	(B)	Shearing	
	(C)	Tearing		Crushing	
	. ,				
70.	An e	lectrolux refrigerator is			
	(A)	single fluid absorption system	(B)	three non refrigerant absorbent system	
, ,	(C)	two fluid absorption system	(P)	three fluid absorption system	
٠,			٠.		
71.		a vapour compression refrigeration pressor = 210 kJ/kg, condenser = 80 kJ	`	ycle, enthalpy at suction: 190 kJ/kg nen the C.O.P. would be	5,
• •	(A)	5.0	(B)	4.5	
		5.5	(D)	6.5	

72.		component of watershed man	_		, -	•	farmer
•	· ·	Afforestation		(B)	Pasture cultivation	· .	
•	(C)	Silvi pasture		(D)	Olericulture		
•	- :					:	
73.	Whi	ch of the following are the modes	of part	ticipat	tion under participatory	rural appra	isal?
	(i)	Participation to supply informa	tion-	•			
	(ii)	Active participation					
	(iii)	Passive participation		(T)()	(2) 1 (22) 1		
		(i) and (ii) only		(B)	(i) and (iii) only		
	, (C)	(ii) and (iii) only	•	(D)	(i), (ii) and (iii)		
•				•			
74.		project proposals for watershed lems, economic justification for the			·		and its
		Work plans		(B)	Maps		
	(C)	Estimates		(D)	Execution		
	. '.'						
75 .	. Δ. do.	ep narrow gorge is called	·.				-
10.	(A)	Rill		(B)	Gully		
		Ravine	•	(D)	Canyon		
	(.	navine		(D)	Canyon	•	
	,					·	
76.		water collection in the farm pond	is dire	ctly u	sed for		
	(A)	Fish culture alone	·			·	
	(B)	Protective irrigation alone	• .	٠.			
,		Both fish culture and protective	e irriga	tion			
• • •	(D)	Recreation alone	,	•			•
							•
77.	Whic	ch of the following is induced grou	ınd wa	ter re	charge method?		•
	(A)	flooding		(B)	basics		
	(C)	ditch or furrow	,		infiltration galleries		:
						•	

78.	Which of the following can be studie	d using remote sensing a	and geographic information
	system?	1	
	(i) Forest cover		
	(ii) Forest ecosystem		
	(iii) Forest fire prediction		•
	(iv) Strategies for forest protection		
	(A) (i), (ii), (iii)	(i), (ii), (iv)	
	(C) (i), (iii), (iv)	(D) (i), (ii), (iii) an	d (iv)
79.	In a toposheet with R.F.= $\frac{1}{50,000}$, one	e centimeter in the map r	epresents ————
	meter in the ground.		
	(A) 5	(B) 50	* * * * * * * * * * * * * * * * * * * *
	500	(D) 50000	
	(4 0)	(D) 00000	, •
		•	
	different wave bands of electromagnet (A) Geographic Information System		oning System
- ,	Remote Sensing	(D) Information T	'echnology
		,	
81.	In air borne remote sensing, the succe	essive photographs of terra	ain are taken in such a wa
•	that a ——— percent overla	ap in forward direction.	
	(A) 100	(B) 80	
	60	(D) 40	
	•		
		, .	
82.	The groundnut harvesters available in	India perform all the folio	owing operations except
,	(A) Digging and elevating		
•	(B) Separating clods and soil	•	
	Removal of groundnut pod from	vines	
	(D) Windrowing the harvested plan	ts	
•		ч	

83.		bottoms with sharply ire considerable	turned	mould boar	ds do a s	superior jo	b of pul	variza	tion l	but
"	(A)	Low vertical suction	•				•	•		
	(B)	Low operational speed	[. · ·			
	(C)·	High cost		•			,			•
		Draft								
			•		•			at.		•
84.	The i	useful life of a wheel typ	e tractor	ic	· ,	. ,	•	•	•	
01.	(A)	8 years	·		10 years		•	•		
	(C).	14 years		(D)	15 years					
	(0).	14 years		. (1)	10 years	· ·	•			
٥٣	rmi .	T T T T C C ()	1 51		,					,
85.		sher which are not fitted rizontal director is called		pirator uni	t have got	only one	blower w	hich b	lows	aır
	(A)	Aspirator thresher								
		Drummy thresher				·			. • .	
	(C)	Olpad thresher		•				•		
	(D) .	Hammermill thresher		•			•			
								•		•
86.	The c	size for the self propelled	Laombino	rarios fron	·	• •				
o,o. ,	The s	$2 ext{ to } 4 ext{ meters}$. combine	(B)	1 to 1.5 i	notor		•		
	(C)	1.5 to 1.75 meters		(D)	,			٠		
	(0)	1.5 to 1.75 meters		(D)	4.5 to 10	meters	٠.			
	777							•		
87.	The t	ype of universal joint ge	nerally u	•	•		n as			
		Cardan joint	,	(B)				٠.	•	
	. (C)	Knuckle joint	,	(D)	Pin joint	• ,				
	• •	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		•		•				
38. ,	Redu	ction in value of a machi	ine with t	he passage	of time is	called as	•	•	•	•
		Depreciation	•	(B)	Apprecia	tion				
	. (C)	Salvage value	4	(D)	Junk val	ue	,	,		
		•			•					

89.	,	perpendicular distance fro heel to landside is called a	_	ne snai	re to the line joinin	g the point of the s	mar
	(A)	Size of the plough		(B)	Throat clearance		
	(C)	Horizontal suction		(D) ·	Vertical suction		
			•			•	•
90.	A till	lage system in which only	isolated ban	ds of s	oil are tilled is calle	d as	
	(1)	Strip tillage		(B)	Minimum tillage		
	(C)	Mulch tillage	•	(D)	Rotary tillage		
	·					•	•
91.	Elec	trolite used in tractor ba	•		al reaction usually	consist of about	35%
.·	(A)	Nitric	. •	(3)	Sulphuric	٠	
	(C)	Hydrochloric		(D)	Any acid		
•			•		•		
92.		o bullocks weighing 350 ker developed by the bullocl 2 hp		ulling (B)	an implement with 5.72 kW	a speed of 3 km/h	r, th
. •		0.572 kW	•	(D)	0.5 hp		
•			•		•		
9 3.	In —	lubricatio	n arratom oil	ie nur	nped directly to the	crank shaft conne	ectin
<i>5</i> 0.		piston pin and cam shaft of		•	-		
>	(A)·	Splash system			-		
	(B)	Oil circulation system					٠.
		Forced feed system		•	•		
	(D)	Direct injection system					
	, .				•		
94.	,	clutch is mo	st popular in	four v	heel tractors.	•	•
	(A)	Dog		(B)	Fluid coupling		
		Friction	· .	. (D)	Transmission		
	~ ^ .		, •	- '	· · · ·		٠.

95.	The s	pecific fuel consumpt	ion limits for	36 to 55 H	b tractor fixed by Go	ovt. of India is	. ;
	(A)	205 g/PTO HP/hr		·(B)	200 g/PTO HP/hr		
		195 g/PTO HP/hr		(D) ·	185 g/PTO HP/hr		
					· · · · · · · · · · · · · · · · · · ·	<i>,</i> ·	
96.	Weig	ht transfer is represe	nted by	·. ·		·	,
		$Pull \times Hitch height$	÷.				
•	(4)	Wheel base					
	(B)	$\frac{\text{Pull} \times \text{Wheel base}}{\text{Hitch height}}$					
	(C)	$\frac{Pull \times Hitch\ height}{Wheel\ treed}$					
	(D)	$\frac{\text{Pull} \times \text{Wheel base}}{\text{Wheel treed}}$		· .		•	
,							
97.	A pui	mp in which the pisto	on travel is pe	rpendicula	ar to the pump axis is	s known as	7
	(A)	Axial piston pump					
•		Radial piston pump			;		
	(C)	Tangential piston p	•	•			
•	(D)	Co-axial piston pum					
	` '						
98.	The l	nydraulic brake works	s on the princ	iple of	, ·		
•	(A).	Joules Law	•		Pascal's Law		•
· · · ·	(C)	Boyles Law	•	(D)	Charles Law	. · .	<i>.</i>
		•				•	
99.	With	respect to engine, oil	bath air clea	ners are al	lways maintained		
	(A)	horizontally			vertically	-	
	(C)	45' inclination	•	(D)	30' inclination		
Φ				19			AGE/18 rņ over

100.	The	principle of chain surveying is		•
		Triangulation	(B)	Parallelism
	(C)	Traversing	(D)	Resection
•				
101.	The	curvature of the earth is ignored in		
•	(A)	geodetic surveying	(P)	plane surveying
	(C)	hydrographic surveying	(D)	trignometric surveying
		·		
102.	Leng	th of Gunter's chain is		
	(A)	20'	(B)	33′
		66'	(D)	100'
٠,				
103.	A cro	oss-staff is used for		
	(A)	marking of survey station		•
ı	0)	setting perpendicular lines to survey	line	
	(C)	alignment of a survey line	•	
	(D)	setting a line at an angle to a survey	line a	t a point
104.	A 20	m chain is divided into		
	4	100 links	(B)	150 links
	(C)	200 links	(D)	250 links
105.	Open	traverse is suitable in the survey of	•	
. •	(A)	Ponds	O	Rivers
	(C)	Estates	(D)	Forest
	·			
106.	If a w	vooded area obstructs the chain line th	en iṫ is	s crossed by the
	(A)	Projection line	(B)	Profile line
	(C)	Check line	0	Random line
		- '	•	·

107.	The s	standard recording raingauge adopted	l in Ind	ia is of
	(A)	Weighing bucket type	. (1)	Natural siphon type
	(C)	Tipping bucket type	(D)	Telemetry type
•.			• • •	
108.	A 6-1	n storm had 6 cm of rainfall and the re	sulting	runoff was 3 cm. If the ϕ index remains a
	the s	ame value the runoff due to 12 cm of	rainfall	in 9 h in the catchment is
	(A)	4.5 cm	(B)	6.0 cm
	(C)	7.5 cm	(D)	9.0 cm
109.	An ir	ntermittent stream		
	(A)	has water table above the stream be	ed throu	ighout the year
	(B)	has only flash flows in response to s	torms	
	100	has flows in the stream during wet	season	due to contribution of ground water
	(D)	does not have any contribution of gr	oundwa	ater at any time
110.	Dire	ct runoff is made up of		
٠.	(1)	surface runoff, prompt interflow an	d chann	el precipitation
:	(B)	surface runoff, infiltration and evap	otransp	piration
	(C)	overland flow only		
	(D)	rainfall and evaporation		
			٠	
111.	The	geophysical method of ground water	explor	ation which is suitable for both cased and
	. unca	sed formation is	:	• •
	(A)	electrical resistivity method	(B)	electric logging
	(0)	gamma ray logging	(D)	seismic refraction surveying
			٠	
112.	The	optimum length of a well screen for a ———————————————————————————————————	a tube v	well in a confined aquifer should extend to
	(A)	50-60%	(B)	60-70%
» -	(4.1) (4.1)	70-80%	(D)	Full depth
, 1				

113.	Appl	ication of any plant residu	es or the other m	aterials to cover the top	soil surface is called .
	(A) ·	Tillage	. (B)) Mulch tillage	
	5	Mulching	(D)) Crop cover	* .
114.	The s	graded bunds are not suita	able for construct	ion on the land slopes gr	reater than
	.(A)	2%		6%	
	(C)	10%	(D)) 20%	
•					
115.	Whic	ch of the following is least j	permanent of all	check dams?	
	(A)	Woven wire dam		Brush dam	
	(C)	Loose rock dam	(D)) Plank dam	•
116.	- Whic	h of the following is the m	ost common gully	z control structure?	
	(A)	Check dam		Drop structure	
	(C)	Chute spill way	(D)		
•	`. ′			, = = - , 	•
117.	β Amor	ng the three types of m	novement of soil	nontialog by wind on	anion muhish is
ELį.		onsible for transporting ma			
•	(A)	Suspension			
		Saltation			
•	(C)	Surface creep		· · · · · · · · · · · · · · · · · · ·	
	(D)	All the three movements	contribute equal	lly	
				,	
118.	Whic	h of the following stateme	nt(s) is/are true?		•
	(i)	A wind break is any type	of barrier for pro	otection from winds	
	(ii)	Wind breaks are longer t	than shelter belts	· }	
,	(iii)	An ideal form of shelter	belt is pyramidica	al .	,
	(A)	(i) and (ii) only		(i) and (iii) only	
	(C)	(ii) and (iii) only	(D)) (i), (ii) and (iii)	
119.	Susp	ension accounts for ———	——— per cen	t of total soil loss moven	nent by wind.
•	4	15	(B)	35	
	(C)	50	(D)	75	
		•			

120.	USLE equation is presented by			
	(A) Hermsmeier	(B)	Mutchler	
•	(C) Lal		Wischmeier	
				•
121.	Projects having a culturable command a classified as medium irrigation projects.		ha to	——— ha are
,	(A) 1000 to 2000	(1)	2000 to 10,000	
	(C) 10,000 to 15,000	(D)	15,000 to 20,000	
		٠	• • • • • • • • • • • • • • • • • • • •	
100	Which of the following statement(s) is/ar	re true?		•
122.	Which of the following statement(s) is at	e true.		
٠.	(i) The structure of soil is dynamic			• .
	(ii) Soil structure regulates porosity	. ,		•
	(iii) Platy structures normally aid free	drainage		
•	(A) (i) only	(25)	(i) and (ii) only	
	(C) (ii) and (iii) only	(D)	(i), (ii) and (iii)	*,
		1 	field weighed 1	055 kg on oven driving
123.	A 660 cm ³ soil core taken by a core san True specific gravity of soil was 2.65. De	termine t	he porosity of the so	oil
•	(A) 60%	(D)	40%	
	(C) 0.06%	· (D)	0.04%	
,	(0) 0.00%	;		
124.	Match the following:			• '
*		sical dime	ension	
	(4) 123 4233-21	-1	•	
	(c) Hydraulic radius 3. ML (d) Bulk density 4. L^2T	-		
	(d) Bulk density 4. L^2T		,	
	(a) (b) (c) (d)		· · -	
	(A) 2 3 4 1			
	2 4 1 3	٠.		
	(C) 2 4 3 1			
·	(D) 1 4 3 2			

	(a)	Contour furr	ow irriga	ition '	1. When	n general slo	pe is gradu	al and ve	erv little
•	(b)	Straight bord	der irriga	ition		that bake ar	•	•	
•	· (c)	Basin irrigat	ion	,	•	ted is uneve		٠.	aphv
	(d)	Corrugation	irrigatio	n		d for fruit cr			17
	٠			•					
	,	(a) (b)	(c)	(d)	•		,	•	
	(A)	2 . 1	4	3					
	(B)	1 . 2	4	3					
	100	3 1	4	2	•			,	
,	(D)	3 2	4	1					
	,	•		, ,		•	٠		
126.	The	width of a bor	der strip	usually r	anges betwe	en			
	(A)	1 to 5 m			(B)	2 to 10 m			
:	(22)	3 to 15 m			(D)	4 to 20 m	•		,
									•
127.	, Inflo	w-outflow me	thod can	be used t	o determines		—— in fur	rowe	
	(A)	Depth of flo			(B)	Width of f		iows.	
				•	(D)	•		•	
	(C)	Soil moistur	'e			Infiltration	n		
128.	A hig	gh pressure re	volving h	nead sprin	ıkler operate	s at a pressi	are of	• •	– KSC.
	(A)	0.25	,		(B)	0.5			•
	(C)	0.75	•			2.	•	,	
					• •			.	
129.	The t	type of sprink	ler heads	adopted	for irrigating	g lawns are			
	4	Pop-up sprii	nklers		(B)	Micro-spri	nklers		
	(C)	Rotary sprin	ıklers		(D)	Rain gun	•		
CEA	GE/18	ł.		`	24				

Match the following:

125.

130.	Whic	h of the following is/are correct?
	I.	The farm stead should be located near the centre of the farm
	II.	Site for farm stead should have high elevation and good drainage
	III.	The farm stead should be near a source of permanent water supply
٠	(A)	I and II (B) II and III
	(C)	I and III
131.	The 1	percentage of area of a farm stead out of the total farm area should be
	(A)	1 to 2% (B) 2 to 4%
•		3 to 5% (D) 4 to 6%
	•	
132.	Whic	ch of the following is/are correct?
	I. ·	In Bedroom of farm house, cross ventilation with one side exposed to the prevailing
	,	breeze
	IJ.	The kitchen must have an eastern location
	III.	The store room should be located near the kitchen
:	(A)	I and II (B) II and III
,	(C)	I and III
133.	The	wall constructed for seepage control around masonry structures is called
••	(A)	End sill Cut-off wall
-·	(C)	Head wall (D) Apron
134.	The	channel crossing structure used when the road fill is sufficiently high and the channel
•	bed l	lies on the field surface is
	(A)	Inverted siphon (B) Flume
		Culvert (D) Turn out
-		

135.	The (Gutters in the stanchio	on barn shoul	d have a i	minimum slope	of ———	%.
	(A)	1%	•		2%		
٠,	(.C)	3%		(D)	4%		
		<u> </u>			•		
136.	Duri than	ng slump test perform	ed to determi should be reje		asticity of concre	te, if concret	e slumps more
	(A)	10			12.5		
	(C)	15	i.	(D)	17.5		· · · · · · · · · · · · · · · · · · ·
,	•.	•	•	٠	•		•
137.	In w	ire floored poultry ho	uses, the floo	or is place	ed about ———	cm	above ground
,	(A)	30		(B)	35		
	.(C)	40 .		()	45	•	
		•					
138.	Stan	chion barn is also calle	ed the		• .	•	
	4	general purpose barı	ı.	· (B)	open air barn	•	
٠.	(C)	loose housing barn		· (D)	milking parlou	r .	,
	,					: .	
139.	The a	average floor area requ	iired per anin	nal for cov	w stall with alle	ys is in the ra	ange of
•	(A)	2.20 sq.m.		(B)	3.50 sq.m.		ř.
	(C)	5.20 sq.m,	· ·		6.00 sq.m.	·	•
140.	The 1	passage between the o	uter wall and	the mans	ger is called		,
	(A)	Milking parlour		(B)	Cow stall		
٠	4	Feed alley		(D)	Gutters	•	
	•		•		•		
141.		barn structure wher					he roughages,
		Community barn	*	(B)	Pen barn	···	
	(C)	Stanchion barn		(D)	Hering bone ba	arn	•
	(,~)			(-)	,	· ,	•

L4Z.	Maxi	mum rower rome tracking (int rry is deed
	(A) _.	to protect the battery from over charging
	(B)	to protect the PV module from over power production
		to match the impedance of the module with that of the load/battery
	(D)	to track the sun to produce more power
,		
143.	Estin	nate the available wind power at $10 \mathrm{m/s}$ wind velocity in a wind will rotor diameter m .
•.•	4	173.2 kw (B) 346.4 kw
	(C)	1732.3 kw (D) 3464.7 kw
144.		h of the statements are correct?
. ,	Solar	photo voltaics is
	(i)	Conversion of light into electricity
	(ii)	Generation of electromotive force from the ionizing solar radiation
	(iii)	Conversion of solar thermal energy into electricity
	(iv)	Electrical energy generation using solar heliostat
	4	(i) and (ii) (B) (ii) and (iii)
	(C)	(iii) and (iv) (D) (iv) and (i)
	•	
145.	Yaw	mechanism in horizontal axis wind turbine helps to
		turn the rotor according to the wind direction
	(B)	raise the rotor according to wind availability
	(C)	change the pitch angle of the rotor
* *	(D)	rotate rotor according to the wind power
	(D)	Totale food decorating of the second
146.	Savo	nius rotors are — type wind machines.
	(4)	self starting (B) high speed
:	(C)	high efficiency (D) low solidity

147.	The t	chermo chemical conversion efficiency	of gasi	fication process is
	(A)	10-30%	(B)	30-60%
	(S).	60-90%	(D)	more than 90%
~	•		•	
148.	Iņ bio	o mass gasification process, the Boudo	uard r	eaction is given by
•		$C + CO_2 \rightarrow 2CO$ $C + H_2O \rightarrow CO + H_2$		$C + 2H_2 \rightarrow CH_4$
:	(C)	$\mathrm{C} + \mathrm{H_2O} \! \to \! \mathrm{CO} + \mathrm{H_2}$	(D)	$C + O_2 \rightarrow CO_2$
`, •	•			
149.	The o	charcoal produced is about ———		kg, when 100 kg dry biomass is fed in
	charc	coal retorts operating at 600° C.	•	
	01	30	(B)	50
	(C)	70	(Ď)	90
150.	Tradi	tional charcoal making is done by the	follow	ing process
	(A)	Combustion		
·	(B)	Gasification		
	400	Pyrolysis	•	
*	(D)	Anaerobic fermentation		
151.	The c	ommon micro organism used for etha	nol pro	duction is
	(A)	Methanogenic bacteria	(B)	Acedogenic bacteria
		Saccharomyces cerevisiae	(D)	Enzymes
152.	The o	zone layer acts as an efficient filter fo	or harn	nful solar UV-B rays is in the
		n of the earth's atmosphere.		
	(A)	Troposphere	P	Stratosphere
	(C)	Mesosphere	(D)	Hetrosphere

- 153. Recirculatory batch dryers are
 - (A) batch non mixing type grain dryer
 - (B) batch mixing type grain dryer
 - continuous flow non mixing type grain dryer
 - (D) continuous flow mixing type grain dryer
- 154. Equation for the conversion of percent moisture content in wet basis (m) to percent moisture content on dry basis (M) is
 - (A) $M = \frac{100 m}{100 m}$

 $M = \frac{100 \, m}{100 - m}$

(C) $M = \frac{m - 100}{100 \, m}$

- (D) $M = \frac{100 m}{100}$
- - (A) 12 14

14 - 16

(C) 16 - 18

- (D) 18 20
- 156. Parboiling of Paddy is a _____ process.
 - (A) Soaking

(B) Steaming

(C) Drying

- Hydrothermal
- 157. Centrifugal dehusker removes husk from paddy based on ———— force
 - (A) Frictional

(B) Shear

(C) Compression

- Impact
- 158. The differential speed of break rolls of a wheat mill is in the proportion of
 - (A) 3.5:1

(B) 3:1

(6) 2.5:1

(D) 2:1'

159.		is commonly used for	the 1	produ	ction of activated carbon.
· · .		Coconut shell	٠,	(B)	Coconut husk
	(C)	Coconut kernel	- ,	(D)	Coirpith
160.	. ;	hootoo the wines		:,	
100.		hastens the ripening Ethylene	oi iri		
	((1)	·		(B)	Carbon dioxide
	(C)	Nitrogen		(D)	Carbon monoxide
161.	Stefa	n - Boltzmann's Law is related to -			——— heat transfer.
	(A)	Conduction	•	•	
- ,	(B)	Forced convection	٠		
		Radiation			
	(D)	Natural convection			
162.	(Ther	mal diffusivity is given by			
•	(A)	$rac{C_p}{K ho}$		(B)	$p / K \rho C_p$
.· · · · ·		$\frac{K}{ ho C_p}$	•	(D)	$\frac{KC_p}{\rho}$
163.	The e	conomy of evaporation of given by	' .		
,	(A)	$1 - \frac{\text{mass of water evaporated}}{\text{mass of steam supplied}}$	•		
	(B)	$1 - \frac{\text{mass of steam supplied}}{\text{mass of water evaporated}}$			
•		mass of water evaporated mass of steam supplied			

- (D) Coirpith
- (B) Carbon dioxide
- (D) Carbon monoxide
- heat transfer.

mass of steam supplied

164.	Blar	nching of vegetables is don	e to			•		
	(i)	Inactivate enzymes					_	
	(ii)	To destroy peroxides		,				,
	(iii)	To kill pathogens	, ·	,				
1	(iv)	To kill micro organisms					•	
	(A)	(iii) and (iv)		(B)	(ii) and (iii)	,		
	(C)	(i) and (iv)			(i) and (ii)			
	,		•					
165.	Deci	mal reduction time in mic	robial destr	uction is	s inversely pro	oportional t	ю	•
•	(A)	Universal gas constant						
	·(B)	Initial concentration						•
		Z value	· .					•
	(D)	Reaction rate			. •		,	
•	`.'							
166.	An e	extruder does not have the	following c	omponer	nt	,		
,	(A)	Screw		(B)	Barrel	•	, *.	
	(C)	Die			Compressor	•	, .	
	•				,			
167.	Sepa	ration of liquid from solid	ls by applica	tion of p	oressure is kn	own as		
	(A)	Extraction		(B)	Leaching			
	(C)	Filtration			Expression		• •	
	(0)	riidailoii			Emploosion.			
							c c	7
168.	Heat	t is generated due to		- in food	material in n	aicrowave f	leating of fo	ods.
•	(A)	Explosion of molecules						
. ,	(B)	Electroporation	•	• •	•			
·.	(C)	Electrical resistance			•	•		
		Change of polarity						
	-			•				

169.	The 1	main objective behind demarcating	g the priori	ty watersheds is to		
	(A)	Assess runoff		•	•	
	(B)	Estimating area extent			•	
		Carry out soil and water conserv	ation activ	ities	•	
	(D)	Prepare hydrograph			·	
170.	Wate	ersheds and macro watersheds can	be delinea	ated with the aid of	S	cal
	im'ag	ery.			•	
	(A)	1:2,00,000	(B)	1:1,00,000		
		1:50,000	(D)	1:25,000		
			•			
171.	In wa	atershed domain, what does SWAT	stands for	·?		
	(A)	Strength and Weakness Assignm	nent Techn	ique [,]		
•		Soil and Water Assessment Tool	•		•	
	(C)	Soil and Water Analysis Tool		•		
	(D) ·	Soil and Water Tool	ŀ		•	
		•			•	
172.	Geo-l	Hydrological unit with a common o	drainage ou	ıtlet is called		
	(A)	Catchent area	· (B)	Command area	• • • • • • • • • • • • • • • • • • • •	
	(C)	Ayacut area		Watershed		
	•				·	
173.	Main	ı principles of watershed managem	ent includ	es ·		
	I.	Utilizing the land based on its cap	•			
,	II.	Protecting fertile top still		-		• .
	III.	Minimizing sitting up of tanks, re	eservoirs	•	,	
	(A)	I and II only	(B)	II and III only	, , , , , , , , , , , , , , , , , , ,	
	(Ċ)	I and III only		I, II and III		
				•		

174.	Augn	nenting the entry of rain water or	surfac	e water into the geol	ogical formation by
	chan	ging the natural conditions of the soil	profilė	is defined as	
	(A)	Watershed development			;
		Artificial ground water recharge			
	(C)	Ground water exploration			·
	(D) ,	Bio drainage			
175.	Maxi	mum rate of feeding of water by the re	echarge	e well to the aquifer is	known as
	(A)	Specific capacity	VD)	Recharge capacity	•
	(C)	Specific recharge rate	(D)	Well discharge	·
•.					
176.	Whic	h of the following statements are TRU	JE, for	selecting a site to cons	truct a farm Pond?
,	(i)	Site should not cause excessive seepa	ge loss	· .	
	(ii)	Pond should be near to the area when	e wate	r is to be used	
	(iii)	Large area of shallow water to be avo	oided		
	(A)	(i) and (ii) only	(B)	(i) and (iii) only	
•	(C)	(ii) and (iii) only		(i), (ii) and (iii) only	
177.	The o	capacity of farm pond is computed by t	using		
· .	مرين	Trapezoidal formula	(B)	Rational formula	
•	(C)	Clark's formula	(D)	Rhosla's formula	
					<i>:</i>
178.	A liv	e hedge planted just above the bench	acts a	as a soil filter preventi	ng soil erosion with
:	time	makes the terraced bed		, ,	
• •	(A)	more sloppy	(3)	less sloppy	
•	(C)	flatter	(D)	adverse slop	
		•			

	<i>-</i> .				•	•	
179.		ay harvesters of flail		knives rot	ating in -		plane
	para.	llel with the direction of	travel.			,	
		Vertical			•		,
	(B)	Horizontal	•		. ;		
•	(C),	Tilting '					
	(D)	Circular		•		•	
	*						
180.		size of the bund former	in determined by r	neasuring t	the maxim	um horizor	ntal distance
	• ,		•			·	,
	(A)	Bunds			•	•	•
, '		Two rear ends of the fo	orming boards			•	
	(C)	Two front sides of the	forming boards		•		
	(D)	Two adjacent bunds	·. •	•	,		
	,		•	•			•
,	to (A)	w spacing of 60cm and t 30 cm	wo seeds are dropp (B)	•	the spacing	between r	uills in equal
		60 cm				,	,
`	<i>(</i>		(D)	15 cm		•	
182.	In n	nanually operated kna	apsack sprayer, a	pressure	of -		kg/cm² is
	main	tained in the pressure cl	hamber.			٠.	
•	11	3 - 5	(B)	6 - 9	;		
	(C)	12 - 15	(D)	20 - 25			•
			,				· .
183.	The r	power required to pull a	four bottom 30 cm	nlough w	onleina at 9	O am dantl	. 4 Irms
200.		speed and soil resistanc		r prougn we	iking at 2	o cm depu	i, 4 kms per
,	(A)	18.29 hp	(B)	28.39 kw	<i>7</i> '		
	(C)	36.53 kw		18.29 kw			
	\-\/			10.20 11	,		•
,						•	

		achine to cut herbage crops and leave			
*	(A)	Mower	(B)	Reaper	
•	(C)	Reaper binder	. (D)	Sickle	•
	` ` `			•	
85.	•	of the sowing machine which conve	eys the s	eeds or fertilizer f	rom the delivery tube
	the f	urrow is called as			
		Boot	(B)	Seed tube	•
	(C)	Seed conveyor	(D)	Standard	
•					
.86.	A me	thod of plonting, in which row to rov	v and pla	ant to plant distan	ce is uniform is called
	(A)	Hill dropping			
		Check row planting			
•	(C)	Broadcasting	•		•
	(D)	Seed dropping behind the plough	•		
	` ,				•
87.	A rol	ler comprising a number of thick di	scs each	having the form of	it trustum of a cone w
		th periphery joined base to base and		,	
	smoo (A)	Cage roller	(B)	Weeder Mulchev	
		1		,	
		Cage roller	(B)	Weeder Mulchev	
88.	(A)	Cage roller Cambridge roller ulate the theoretical area covered p	(B) (D) er day o	Weeder Mulchev Land Packer f 8 hours by a tra	without gap is called
.88.	(A)	Cage roller Cambridge roller ulate the theoretical area covered parts of the ploughing speed of the ploughing sp	(B) (D) er day o	Weeder Mulchev Land Packer f 8 hours by a tra	without gap is called
88.	(A) Calca 35 cm	Cage roller Cambridge roller ulate the theoretical area covered p n plough if the speed of the ploughin 6.72 hectare	(B) (D) er day c g is 6 km (B)	Weeder Mulchev Land Packer of 8 hours by a tra of per hour 6.32 hectare	without gap is called
88.	(A)	Cage roller Cambridge roller ulate the theoretical area covered parts of the ploughing speed of the ploughing sp	(B) (D) er day c g is 6 km	Weeder Mulchev Land Packer of 8 hours by a tra	without gap is called
	(A) Calculated S5 cm (C)	Cage roller Cambridge roller ulate the theoretical area covered p n plough if the speed of the ploughin 6.72 hectare 6.52 hectare	(B) (D) er day of g is 6 km (B) (D)	Weeder Mulchev Land Packer of 8 hours by a tra of per hour 6.32 hectare 6.42 hectare	without gap is called actor drawn four bott
	(A) Calci 35 cm (C)	Cage roller Cambridge roller Late the theoretical area covered purplication of the ploughing of the ploughing of the cut angle at which the plane of the cut	(B) (D) er day of g is 6 km (B) (D)	Weeder Mulchev Land Packer of 8 hours by a tra of per hour 6.32 hectare 6.42 hectare	without gap is called actor drawn four bott
	(A) Calci 35 cm (C)	Cage roller Cambridge roller Late the theoretical area covered purplication of the ploughing of the ploughing of the cate of the ploughing of the cate of the plane of the cut is called as	(B) (D) er day of g is 6 km (B) (D) ting edge	Weeder Mulchev Land Packer of 8 hours by a tra of per hour 6.32 hectare 6.42 hectare e of the disc is ince	without gap is called actor drawn four bott
88.	(A) Calci 35 cm (C)	Cage roller Cambridge roller Late the theoretical area covered purplication of the ploughing of the ploughing of the cut angle at which the plane of the cut	(B) (D) er day of g is 6 km (B) (D)	Weeder Mulchev Land Packer of 8 hours by a tra of per hour 6.32 hectare 6.42 hectare	without gap is called actor drawn four bott

190.	The:	rate of circulation of the water pump s	should	not be less than	
	(A)	0.2 litre/BHP/min	•		
		0.5 litre/BHP/min	•		
	(C)	0.4 litre/BHP/min			
	(D)	0.3 litre/BHP/min			
			. 1		
191.	The 1	pin that connects the piston to the con	necting	g rod is known as	·
	. (A)	Crank pin	(B)	Connection pin	
,		Gudgeon pin	(D)	Steel pin	
192.	The o	change of state of a gas with respect to	o press	ure and volume when temper	rature remain
	const	tant is known as			
-		Isothermal change		· ý	•
	(B)	Isobaric change	,		
	(C)	Adiabatic change	,		٠
	(D)	Total change			,
193.	Cent	ral Region Farm machinery training a	ind test	ting institute is located at	
	(A)	HISSAR	. (B)	ANANTPUR	•
•		BUDNI	· (D)	BHOPAL	
		•			
194.	Powe	er developed by an average pair of bull	locks is	about	
		1 hp	(B)	1.2 hp	
	· (C)	2.0 hp	(D)	0.5 hp	

36

CEAGE/18

195.	• A	is a devi	ce used for inc	creasin	ng the air pressure into the	e engine so that
	more	fuel can be burnt and e			•	
	(A)	Air charger		(B)	Blow charger	
		Super charger		(D)	Compresses	
	,			· . !		
196.		n an implement is moun	and the second s		t hitch, the lines projected	from the lower
	(A)	Centre of gravity	•	(3)	Centre of pull	
	(C)	Centre of draft		·(D)	Line- of pull	
197.	Most	engine tests are conduc	ted using —	•	——— type dynamometer.	
	(A)	Transmission		(B)	Resistance	<i>.</i>
•		Absorption		(D)	Load	
.•				. ,		•
198.	Bekk	er equation for traction	theory is			•
		$F = AC + W \tan \theta$		(B)	$F = AW + C \tan \theta$	
	(C)	$F = CW + A \tan \theta$		(D)	$F = A(C + W \tan \theta)$	•
199.	Tho	honizontal distance het	ween the fron	t and	rear wheels of a tractor r	neasured at the
199.		nd contact is known as				
	(A) -	Wheel tread				• .
		Wheel base				
	(C)	Turning space				,
	(D)	Ground clearance				
						•
200.	The	commercial diesel fuels	have got cetan	e ratin	g varying from	
	(A)	40 to 70		(2)	30 to 60	
	(C)	20 to 50	•	(D)	45 to 75	
		•				

SPACE FOR ROUGH WORK

CEAGE/18 40